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INPOP update in 2023

• Juno CRAS range analysis from 2016 to 2021.5
• INPOP23a : Juno VLBA
• Gain on Jupiter orbit accuracy : from 2 km (17a) to 20 m.
• MEX additional set 

Recent evolution

Juno and Jupiter: 1 normal point per
perijove

From 2 km to 20 meters
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RA I23: 0.061 +/- 0.413.  INPOP23a (after fit)
DE I23: -0.035 +/- 0.557

RA D40: 0.059 +/- 0.402
DE D40: -0.050 +/- 0.701

RA I22: 0.32 +/- 0.391.  INPOP22a (before fit)
DE I22: 0.43 +/- 0.867



Comparisons with DEComparison with other ephemerides

INPOP17a INPOP19a DE438 DE440
2018 2020 2018 2021

Dynamics

MBA 343 i.m. + 1 ring 343 i.m. 343 i.m. 343 i.m.
TNO none 3 rings + 9 ind none 1 ring + 36 ind

I21a: 509 ind
General Relativity EIH EIH + LT EIH EIH + LT
Fit

GMA 153 BVLS 343 MC 343 LS 343 LS
+ 1 ring

TNO none 1 ring mass none 1 ring mass
I21a: 1 mass
@ 509 ind.

Dataset 1913:2014 1924:2019.5 1924:2013+ 1924:2020
I21a: 1924:2020.5
I22a: 1924:2021.5

SSB shift 0 94 km 0 ⇡ 100 km
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Convergency	of	the	models

I22a-D440 <	I19a-D440 <	I19a-D438



Comparisons with DE
Comparison with other ephemerides

INPOP22a-DE440 < INPOP19a-DE440 < INPOP19a-DE438 ! convergency of the models

Earth Jupiter B. Mars

INPOP10e-DE423: 2 mas; 20 m INPOP10e-DE423: 2 mas; 2 km INPOP10e-DE423: 4 mas;1 km

• INPOP22a-DE440 • INPOP22a-DE438 • INPOP19a-DE438 • INPOP19a-DE440

Inner planets: < 100 m over 30 years and < 10 m over 10 years
Jupiter and Saturn : < 500 m over 30 years
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• What about	if	metric field has	a	mass,	mg	?							or	Yukawa	suppression	of	massive	interactions	at	the	
Compton	length,	𝜆! such	as:	

(Will, 2018) :

(Bernus et al. 2019) 

• What about	if	the	metric doesn’t have	a	mass	but	an	additional gravitational field does ?	(Fifth force)

If 𝛼 < 1 and 𝜆! ≫ 𝑟, then 𝜆! ≈
"
#

with	
• 𝛼 ,	the	strenght	of	the	force	
relative	to	gravity

• 𝜆,	the	range	of	the	forceB19	+	5thF	:

New results for graviton (Will	2018,	Bernus et	al.	2019,	2020)	



Massive graviton / Yukawa suppression

𝑚! < 0.10 × 10 "#$ eV/c2.   C.L. 99.7 % 

𝜆! > 122.48 × 10 %$ km C.L. 99.7 % 

𝜆! > 14 − 27 x	10-13 km
𝑚! < 0.40 − 0.8 x	1023 eV/c2(Will	2018):	

postfit analysis

Random exploration	
(RW)	+	cost function

MCMC

(Mariani	et	al.,	Phys.Rev.	D,	108:024047,	Jul	2023 )

(Mariani	et	al.,	2023)	

(Mariani	et	al.,	2023)	(Bernus et	al.,	2019,	2021)	



Einstein massless dilaton : INPOP test (Bernus et al. 2022)

• Introduction	in	INPOP of	previous	EIHDL	and	
Shapiro	modified	equations

• Linear	coupling	(𝑑𝛽& = 0, 𝛽 = 1)
• Random	exploration	for	𝛼' , 𝛼( and	𝛼) starting	
with	flat	large	priors

• Cost	functions

(Z)

(Minazzoli and Hees, 2016)

(Bernus et al. 2022)

• Generic	formalism	allowing	both	WEP,	GWEP	and	SEP	violation
• Non-universal	coupling	between	scalar	field	and	matter	(linear	or	non-
linear)

• Parameters	of	the	metric	( 2𝛼,	𝛽)) depend	on	dilatonic charges (proton,	nucleon)
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where Z(') is defined by Eq. (3) and where the ↵ and � functions are defined in the previous section, the equations
of motion read, at the first post-Newtonian order:
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where µA is the gravitational parameter of body A, rAT is the relative position of body T with respect to A,
rAT = |rAT | and vA is the coordinate velocity of body A while aA is its coordinate acceleration. These are the
modified Einstein-Infeld-Ho↵mann-Droste-Lorentz (EIHDL) equations of motion.

In Einstein theory of GR (that is to say without dilaton: � � 1 = � � 1 = �T = �AT = d�A = 0), these equations
of motion have been first written by Lorentz & Droste in 1917 ([29, 30], for an English translation: [31]), then by
Einstein, Infeld & Ho↵mann in 1939 [32]. This name composed of five personalities (EIHDL) tells better science
history than only the three first names [33]. In appendix B, we give some more considerations about the dynamical
system of N mass monopoles in the massless dilaton theory: global Lagrangian and Hamiltonian formulation and first
integrals are derived.

D. Nordtvedt e↵ect

So far we have only considered test particles and have neglected their self-gravitation. In Einstein’s GR, it is
possible to proceed like this by virtue of the strong equivalence principle. However, in any tensor-scalar theory, this
principle is broken. The calculation of the strong equivalence principle violation was first done by Nordtvedt (1968)
by considering extended bodies as a set of only gravitationally interacting points, and the auto gravitation energy
was integrated on this set in a formalism in which the strong equivalence principle is broken [34, 35]. Later (1981),

(Bernus et al. 2022)
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Will generalized this approach by modelling the bodies as perfect fluid [36]1. More recently (2000), Klioner & So↵el
have generalized this formalism by modelling the bodies as multipolar moments in the parametrized post-Newtonian
formalism [37].

A heuristic argument allows us to implement the Nordtvedt e↵ect without performing all these integrations [38].
In Appendix C, we show that Nordtvedt e↵ect can be integrated in a massless dilaton theory by substituting �A of
EILDH equations of motion by �

0
A where

�
0
A = �A � (4� � � � 3)

3µA

5RAc
2

(29)

where RA is the average radius of body A. The quantity µA/RAc
2 corresponds to the self-gravitating energy of body

A. We will use this term in all our modelling of the Solar system in the following.

E. Modified time travel

In addition to impacting the trajectory of planets, the dilaton theory will also impact the light propagation. In
tensor-scalar theory, it is known that the behaviour of light in the geometric optic approximation does not depend
on the frame chosen [39] (Einstein versus Jordan frames). We can then use the solutions of the field equations
in the Einstein frame presented in Appendix A 2 and the fact light follows the null-geodetic curves. With these
approximation, a classical calculation leads to the modified time-travel between an emission event e and a reception
event r
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R

c
+

X

A

(� + 1� �A)
µA

c2
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n · rrA + rrA

n · reA + reA
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where the �A parameter is given by Eq. (A35), n = (rr � re)/krr � rek, riA = ri � zA and riA = kriAk with i = e

or r.

III. NUMERICAL METHODS WITH INPOP

We included the modifications to the equations of motion presented in Eq. (28) and to the light propagation
presented in Eq. (30) in the INPOP planetary ephemerides to search for a possible signature induced by a massless
dilaton.

A. Reduction of the number of parameters

Constraining the WEP at the Solar system scale using a totally general phenomenological approach is di�cult
because, without any physical hypothesis or without considering a specific underlying theory, there are too many
parameters to be constrained – at least as many as the number of planets. For example, this would be the case if
we tested the EP by including one parameter � = (mg/mI) � 1 for each body (mG and mI being respectively the
gravitational and the inertial masses). On the other hand, considering a specific theory like the massless dilaton allows
one to search for a specific violation of the WEP limiting the parameters space to be explored. The parameters that
characterize the theory described by the action from Eq. (1) are the function f('),!(') and the coupling functions
characterizing the interaction between the scalar field and matterDi(�). At post-Newtonian level, only the background
values for the function Z(') defined in Eq. (3) and of the background values for the first and second derivatives of
the coupling functions impact the measurements.

In the case of a linear coupling between the scalar field and matter, only the following coe�cients enter the

expression of the equations of motion and of the Shapiro time delay: � = 1�↵2
0

1+↵2
0
, �A = ↵0↵̃A

1+↵2
0
+ (� � 1) |⌦A|

mAc2 and

�AB = ↵̃A↵̃B/(1 + ↵
2
0). These e↵ective parameters are related to the fundamental parameters of the theory through

1 The cited book was published in 2018 but the first edition was published in 1981.



Revised test with (Mariani et al, 2023b, arXiv:2310.00719) 

(Minazzoli and Hees, 2016)

• Generic	formalism	allowing	both	WEP,	GWEP	and	SEP	violation
• Non-universal	coupling	between	scalar	field	and	matter	(linear	or	non-
linear)

• Parameters	of	the	metric	( 2𝛼,	𝛽)) depend	on	dilatonic charges (proton,	nucleon)

From these equations, the Nordtvedt parameter 𝜂 is now fonction of 𝛼)

• INPOP21a	
• MCMC	on	𝛾 (Test	A)	:		𝛿* =	0
• MCMC	on	𝛾 with only the	universal coupling of	dilatonà Brans-Dicke
theory-like	framework (Test	B)	→ 𝜂

• New	SEP	limit

• Limitation	:	 1 − 𝛾 > 0 ; 𝜂 <	0

(Marini et al, 2023b, arXiv:2310.00719) 
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Revised test with (Mariani et al, 2023b, arXiv:2310.00719) 

Test	A:	MCMC	on	𝛾 in	PPN	(without SEP,	𝛿* =	0)

1 − 𝛾 = −2.1 ± 2.3 × 10"+
(Bertotti et	al.	2003)	

1 − 𝛾 < 2.5 × 10"+ (99.7%)

1 − 𝛽 = 0

(Fienga and	Minazzoli,	2023)
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Test	B	:	MCMC	on	𝛾 with only the	universal coupling of	dilaton

Detectability of	SEP	
with planetary orbits

𝜂 = −5.48 ± 7.3 × 10"+
(Genova	et	al.	2018)	

Messenger

LLR
(Viswanathan et	al.	2018)	

|𝜂| < 30 × 10"+

Binary pulsar
(Voisin	et	al.	2020)	

|𝜂| < 0.76 × 10 "+ (95%)|𝜂| < 2.70 × 10 "+ (95%)

η < 2.5 × 10"+ (99.7%)

η < 2.8 × 10"+ (99.7%)	

without SEP

with SEP

𝑤,- > 140, 000𝑤,- > 35, 327

• Brans-Dicke theory-like	
framework

• SEP



1) INPOP update in 2023

2) New results for graviton and SEP

3) ITLN: Interplanetary Laser Tri-lateration Network

Interplanetary Trilateration Workshop
Martin Johnson House
Scripps Institute of Oceanography, University of San Diego, CA
Feb 28 - Mar 1, 2023



Interplanetary Laser Tri-lateration Network 

• Centimetric measurements of interplanetary distances
• (First) concept : Smith et al. 2018
• Recent sensitivity and feasibility studies: (Bills et al. 2022) 
• Earth, Venus, Mars



Interplanetary Laser Tri-lateration Network 

• Laser transponders based on LISA technology
• Asynchronous ranging

(Smith et al. 2018)

(Mazarico 2023)



Interplanetary Laser Tri-lateration Network 

(Smith et al. 2018) : GM-dot of 10-14 over 5 years

Scientific Rational



Interplanetary Laser Tri-lateration Network 
(Smith et al. 2018) : GM-dot of 10-14 over 5 years

ILTN

• 3 spacecraft, orbiting 3 planets, ~200 millions km 
apart connected by ranging measurements.

• Accuracy ~1 cm for one single measurement
• at a cadence of 1 measurement per second 
• continued for 1 day (86400 s) à diurnal normal 

point 

(Bills 2023)



Simulations with ITLN : several possible configurations

• With and without Venus-Mars link

• Durations: 1 year, 2.5 years and 5 years

• 1 normal point per day with 0.1 mm accuracy

(Fienga, arXiv:2301.06394) 



Impact	of	the	mission	duration
for	0.1	mm	with	Venus-Mars	link

Duration:	2.5	years	Duration:	5	years	 Duration:	1	years	

Conclusion	A:	1	order improvement from 1	to	5	yrs mission

(Fienga, arXiv:2301.06394) 



Impact	of	the	Venus-Mars	link
for	0.1	mm

Duration:	5	years	

(Fienga, arXiv:2301.06394) 

Conclusion	B:	Factor	2	improvement with Venus-Mars	link



Comparison with BC/JUICE

• Duration:	5	years
• Accuracy	:	0.1	mm

• Without	Venus-Mars	link
• Duration:	1	years
• Accuracy	:	0.1	mm

• With	Venus-Mars	link

Conclusion	C:	Interesting in	particular for	MB	asteroids



Simulations with ITLN for !2̇ 2

Ratio of covariances for 3"̇ " estimated together with other
planetary ephemeris parameters

Present measurement (INPOP21a) = 6 x 10-13 yr -1

Ratio with Bepi-Colombo (2yrs @ 1 cm) = 0.17 

VE+ME+VM
0.1 mm

VE+ME
0.1 mm

VE+ME+V
M

1 cm

5 yrs 0.001 0.0018 0.55 0.05

2.5 yrs 0.003 0.0045 0.66 0.10

1 yrs 0.009 0.012 0.75 0.20

No BC nor EC/JUICE data included

(Fienga, arXiv:2301.06394) 

Conclusion	D:	Significant improvement for	 N/̇ /



Interplanetary Laser Tri-lateration Network : conclusions 

• Another meeting is planned for first semester 2024

• Technological challenges seem significant (LISA heritage)



fin



Revised test with (Marini et al, 2023b, arXiv:2310.00719) 

Test	A:	MCMC	on	𝛾 in	PPN	(without SEP,	𝛿* =	0)

1 − 𝛾 = −2.1 ± 2.3 × 10"+
(Bertotti et	al.	2003)	

1 − 𝛾 < 2.5 × 10"+ (99.7%)
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