

Planetary and Lunar Ephemerides : from tests of SEP and graviton to ITLN

Agnès Fienga^(1,2)

Olivier Minazzoli ^(3,4), V. Mariani⁽¹⁾, A. Hees ⁽⁵⁾, L. Bernus ⁽²⁾, L. Bigot ⁽⁶⁾, A. Di Ruscio ^(1,7), D. Durante ⁽⁷⁾, M. Gastineau ⁽²⁾, J. Laskar L. Iess ⁽⁷⁾

⁽¹⁾ OCA, Géoazur, UCA ⁽²⁾ IMCCE, OBSPM ⁽³⁾ OCA, Artémis, UCA ⁽⁴⁾ Bureau des Affaires Spatiales, Monaco ⁽⁵⁾ SYRTE, OBSPM ⁽⁶⁾ OCA, Lagrange, UCA ⁽⁷⁾ CRAS, Sapienza, Rome

PNGRAM 2023

- 1) INPOP update in 2023
- 2) New results for graviton and SEP
- 3) ITLN

Journées des systèmes de référence spatio-temporels 2023 "Time and General Relativity" 11-13 September 2023, Nice (France)

Observatoire

INPOP update in 2023 New results for graviton and SEP ITLN

INPOP update in 2023

- Juno CRAS range analysis from 2016 to 2021.5
- INPOP23a : Juno VLBA
- Gain on Jupiter orbit accuracy : from 2 km (17a) to 20 m.
- MEX additional set

	INPOP17a	INPOP19a	INPOP20a/21a/22a
	2018	2019	2020/2021
Dynamics			
MBA	343 + 1 ring	343	343
TNO	none	3 rings + 9 ind	$509 \operatorname{ind}$
Lense-Thirring	N	Ν	Y
Fit			
Parameters	210	402	402
GM_A	152	343	343
Method	BVLS	BVLS + MC	BVLS + MC
Dataset	1913:2014	1924:2019.5	1924:2020/2020.5/2021.5
Jupiter	$2 \mathrm{~km}$	20 m	20 m
Saturn	2004-2014	2004-2017	2004-2017
SSB shift / INPOP10e	0	94 km	94 km

Convergency of the models

I22a-D440 < I19a-D440 < I19a-D438

	INPOP17a	INPOP19a	DE438	DE440
	2018	2020	2018	2021
Dynamics				
MBA	343 i.m. + 1 ring	343 i.m.	343 i.m.	343 i.m.
TNO	none	3 rings + 9 ind	none	$1 \operatorname{ring} + 36 \operatorname{ind}$
		I21a: 509 ind		
General Relativity	EIH	EIH + LT	EIH	EIH + LT
Fit				
GM_A	$153 \; \mathrm{BVLS}$	$343 \mathrm{MC}$	343 LS	343 LS
	+ 1 ring			
TNO	none	1 ring mass	none	$1 \operatorname{ring} \operatorname{mass}$
		I21a: 1 mass		
		@ 509 ind.		
Dataset	1913:2014	$1924{:}2019.5$	1924:2013+	$1924{:}2020$
		I21a: 1924:2020.5		
		I22a: 1924:2021.5		
SSB shift	0	94 km	0	$\approx 100 \text{ km}$

Comparisons with DE

Convergency of the models

I22a-D440 < I19a-D440 < I19a-D438

• INPOP22a-DE440 • INPOP22a-DE438 • INPOP19a-DE438 • INPOP19a-DE440

1) INPOP update in 2023

- 2) New results for graviton and SEP
- 3) ITLN

New results for graviton (Will 2018, Bernus et al. 2019, 2020)

- What about if metric field has a mass, m_g? or Yukawa suppression of massive interactions at the Compton length, λ_g such as: $\lambda_g = \frac{\hbar}{cm_g}$ (Will, 2018): $w = w_{\text{Newton}} \exp(-r/\lambda_g)$, $w = w_{\text{Newton}} \left(1 + \frac{1}{2}\frac{r^2}{\lambda_g^2}\right) + \mathcal{O}(\lambda_g^{-3})$, (Bernus et al. 2019)
- What about if the metric doesn't have a mass but an additional gravitational field does? (Fifth force)

$$w = w_{\text{Newton}}(1 + \alpha \exp(-r/\lambda))$$

with

- *α* , the strenght of the force relative to gravity
- λ , the range of the force

B19 + 5thF :

If $\alpha < 1$ and $\lambda_g \gg r$, then $\lambda_g \approx \frac{\lambda}{\sqrt{|\alpha|}}$

Massive graviton / Yukawa suppression

(Mariani et al., Phys.Rev. D, 108:024047, Jul 2023)

CL

-15

0

5

λ [m]

10

(Will 2018): $\begin{array}{l} m_g \ < 0.40 \ - \ 0.8 \ \mathrm{x} \ 10^{23} \ \mathrm{eV/c^2} \\ \lambda_g \ > 14 \ - \ 27 \ \mathrm{x} \ 10^{-13} \ \mathrm{km} \end{array}$ postfit analysis

Einstein massless dilaton : INPOP test (Bernus et al. 2022)

(Minazzoli and Hees, 2016)

- Generic formalism allowing both WEP, GWEP and SEP violation
- Non-universal coupling between scalar field and matter (linear or nonlinear)
- Parameters of the metric ($\tilde{\alpha}$, β_0) depend on dilatonic charges (proton, nucleon)

(Bernus et al. 2022)

- Introduction in INPOP of previous EIHDL and Shapiro modified equations
- Linear coupling $(d\beta_X = 0, \beta = 1)$
- Random exploration for α_G , α_T and α_0 starting with flat large priors
- Cost functions

	INPOP19a (Bernus et al. 22)		
Confidence:	90%	99.5%	
$\alpha_0(imes 10^5)$	-0.94 ± 5.35	1.01 ± 23.7	
$lpha_T(imes 10^6)$	0.24 ± 1.62	0.00 ± 24.5	
$\alpha_G(imes 10^5)$	0.01 ± 4.38	-1.46 ± 12.0	
$(\gamma - 1) \times 10^8$	0.2 ± 6	0.2 ± 11.2	

$$g_{\mu\nu} = \frac{f_0}{f(\varphi)} g_{\mu\nu}^* \ m_A^*(\phi) = \sqrt{\frac{f_0}{f(\varphi)}} m_A(\varphi).$$

$$\delta_A = \frac{\alpha_0 \tilde{\alpha}_A}{1 + \alpha_0^2}, \quad \delta_{AB} = \frac{\tilde{\alpha}_A \tilde{\alpha}_B}{1 + \alpha_0^2},$$

$$\mu_A = \frac{G}{f_0} (1 + \alpha_0^2) (1 + \delta_A) m_A(\varphi_0).$$

$$\gamma = \frac{1 - \alpha_0^2}{1 + \alpha_0^2}, \quad \beta = 1 + \frac{\beta_0}{2} \frac{\alpha_0^2}{(1 + \alpha_0^2)^2},$$

(Bernus et al. 2022)

$$\begin{aligned} \boldsymbol{a}_{T} &= -\sum_{A \neq T} \frac{\mu_{A}}{r_{AT}^{3}} \boldsymbol{r}_{AT} \left(1 + \boldsymbol{\delta}_{T} + \boldsymbol{\delta}_{AT}\right) \\ &- \sum_{A \neq T} \frac{\mu_{A}}{r_{AT}^{3} c^{2}} \boldsymbol{r}_{AT} \left\{ \boldsymbol{\gamma} \boldsymbol{v}_{T}^{2} + (\boldsymbol{\gamma} + 1) \boldsymbol{v}_{A}^{2} - 2(1 + \boldsymbol{\gamma}) \boldsymbol{v}_{A} \cdot \boldsymbol{v}_{T} - \frac{3}{2} \left(\frac{\boldsymbol{r}_{AT} \cdot \boldsymbol{v}_{A}}{r_{AT}}\right)^{2} - \frac{1}{2} \boldsymbol{r}_{AT} \cdot \boldsymbol{a}_{A} \\ &- 2(\boldsymbol{\gamma} + \boldsymbol{\beta} + \mathrm{d}\boldsymbol{\beta}_{T}) \sum_{B \neq T} \frac{\mu_{B}}{r_{TB}} - (2\boldsymbol{\beta} + 2\mathrm{d}\boldsymbol{\beta}_{A} - 1) \sum_{B \neq A} \frac{\mu_{B}}{r_{AB}} \right\} \\ &+ \sum_{A \neq T} \frac{\mu_{A}}{c^{2} r_{AT}^{3}} \left[2(1 + \boldsymbol{\gamma}) \boldsymbol{r}_{AT} \cdot \boldsymbol{v}_{T} - (1 + 2\boldsymbol{\gamma}) \boldsymbol{r}_{AT} \cdot \boldsymbol{v}_{A} \right] (\boldsymbol{v}_{T} - \boldsymbol{v}_{A}) + \frac{3 + 4\boldsymbol{\gamma}}{2} \sum_{A \neq T} \frac{\mu_{A}}{c^{2} r_{AT}} \boldsymbol{a}_{A} \\ c(t_{T} - t_{e}) &= \frac{R}{c} + \sum_{A} (\boldsymbol{\gamma} + 1 - \boldsymbol{\delta}_{A}) \frac{\mu_{A}}{c^{2}} \ln \frac{\boldsymbol{n} \cdot \boldsymbol{r}_{rA} + r_{rA}}{\boldsymbol{n} \cdot \boldsymbol{r}_{eA} + r_{eA}} \end{aligned}$$

Revised test with (Mariani et al, 2023b, arXiv:2310.00719)

(Minazzoli and Hees, 2016)

- Generic formalism allowing both WEP, GWEP and SEP violation
- Non-universal coupling between scalar field and matter (linear or nonlinear)
- Parameters of the metric ($\tilde{\alpha}$, β_0) depend on dilatonic charges (proton, nucleon)

From these equations, the Nordtvedt parameter η is now fonction of α_0

(Marini et al, 2023b, arXiv:2310.00719)

- INPOP21a
- MCMC on γ (Test A) : $\delta_A = 0$
- MCMC on γ with only the universal coupling of dilaton \rightarrow Brans-Dicke theory-like framework (Test B) $\rightarrow \eta$
- New SEP limit

• Limitation : $(1 - \gamma) > 0$; $\eta < 0$

$$(1+\gamma-\delta_A)\mu_A = (1+\gamma)\mu_A^I.$$

$$\gamma = \frac{1 - \alpha_0^2}{1 + \alpha_0^2}, \quad \beta = 1 + \frac{\beta_0}{2} \frac{\alpha_0^2}{(1 + \alpha_0^2)^2},$$

$$c(t_r - t_e) = \frac{R}{c} + \sum_A (\gamma + 1 - \frac{\delta_A}{c^2}) \frac{\mu_A}{c^2} \ln \frac{\mathbf{n} \cdot \mathbf{r}_{rA} + r_{rA}}{\mathbf{n} \cdot \mathbf{r}_{eA} + r_{eA}}$$

$$\eta = -(1 - \gamma) = -2\frac{{\alpha_0}^2}{1 + {\alpha_0}^2}$$

Revised test with (Mariani et al, 2023b, arXiv:2310.00719)

(Fienga and Minazzoli, 2023)

Test A: MCMC on γ in PPN (without SEP, $\delta_A = 0$)

Revised test with (Mariani et al, 2023b, arXiv:2310.00719)

Test B : MCMC on γ with only the universal coupling of dilaton

Messenger

(Genova et al. 2018)

1) INPOP update in 2023

2) New results for graviton and SEP

3) ITLN: Interplanetary Laser Tri-lateration Network

Interplanetary Trilateration Workshop Martin Johnson House Scripps Institute of Oceanography, University of San Diego, CA Feb 28 - Mar 1, 2023

Trilogy, a planetary geodesy mission concept for measuring the expansion of the solar system

David E. Smith^{a,*}, Maria T. Zuber^a, Erwan Mazarico^b, Antonio Genova^a, Gregory A. Neumann^b, Xiaoli Sun^b, Mark H. Torrence^c, Dan-dan Mao^d

• Laser transponders based on LISA technology

• Asynchronous ranging

(Mazarico 2023)

(Smith et al. 2018) : GM-dot of 10⁻¹⁴ over 5 years

Scientific Rational

Loss of solar mass by internal nuclear reactions Change in the gravitational constant, G-dot/G Test of equivalence principle Expansion of the solar system Lense-Thirring precession of reference frame Relativistic parameters, $\beta \& \gamma$ Gravitational flattening of the sun, J_2 Precession, nutation & rotation of host planets Obliquity, tides, moment of inertia of host planets Low-degree gravity, seasonal change on host planets Inferences on interior structure Orbits of host planets

(Smith et al. 2018) : GM-dot of 10⁻¹⁴ over 5 years

ILTN

- 3 spacecraft, orbiting 3 planets, ~200 millions km apart connected by ranging measurements.
- Accuracy ~1 cm for one single measurement
- at a cadence of 1 measurement per second
- continued for 1 day (86400 s) → diurnal normal point

Simulations with ITLN : several possible configurations

(Fienga, arXiv:2301.06394)

- With and without Venus-Mars link
- Durations: 1 year, 2.5 years and 5 years
- 1 normal point per day with 0.1 mm accuracy

Impact of the mission duration for 0.1 mm with Venus-Mars link

Conclusion A: 1 order improvement from 1 to 5 yrs mission

Duration: 5 years

(Fienga, arXiv:2301.06394)

Ast GM EMB EMRAT

J2 Ju

Ma Me Sa Sun GM TNB UN

Comparison with BC/JUICE

Conclusion C: Interesting in particular for MB asteroids

•

- Duration: 5 years
- Without Venus-Mars link

- Duration: 1 years
- Accuracy : 0.1 mm
- With Venus-Mars link

Simulations with ITLN for $^{\dot{\mu}}/_{\mu}$

(Fienga, arXiv:2301.06394)

Ratio of covariances for ${}^{\mu}/{}_{\mu}$ estimated together with other planetary ephemeris parameters

	VE+ME+VM 0.1 mm	VE+ME 0.1 mm		VE+ME+V M 1 cm
5 yrs	0.001	0.0018	0.55	0.05
2.5 yrs	0.003	0.0045	0.66	0.10
1 yrs	0.009	0.012	0.75	0.20

Present measurement (INPOP21a) = $6 \times 10^{-13} \text{ yr}^{-1}$

Ratio with Bepi-Colombo (2yrs @ 1 cm) = 0.17

Conclusion D: Significant improvement for ${}^{\dot{\mu}}/_{\mu}$

No BC nor EC/JUICE data included

Interplanetary Laser Tri-lateration Network : conclusions

- Another meeting is planned for first semester 2024
- Technological challenges seem significant (LISA heritage)

fin

Revised test with (Marini et al, 2023b, arXiv:2310.00719)

Test A: MCMC on γ in PPN (without SEP, $\delta_A = 0$)

