

Towards Probing Ultralight Dark Matter Couplings with Acetylene Spectroscopy

Florin Lucian Constantin

Laboratoire PhLAM, CNRS UMR 8523 59655 Villeneuve d'Ascq, France

Oral presentation at Journées Scientifiques du Programme National GRAM 2023

1) From UDM couplings to SM to frequency variations of AMO resonances

2) Potential from infrared precision measurements with $^{12}C_2H_2$ -Modelisation and measurement of a $^{12}C_2H_2$ transition at 1.55 μm -Constraints on UDM couplings to SM

3) Potential from frequency measurements of a MW acetylene clock
-Acetylene MW transitions with enhanced sensitivity to μ-variation
-Molecular theory and metrological performances of a MW clock
-Constraints from frequency measurements of a MW acetylene clock

4) Conclusion

1) Variation of fundamental constants from precision measurements

• Why Acetylene?

Objectives

- State-of-the-art molecular theory and precision measurements

Global Hamiltonian models : Herman and Perry, PCCP 15, 9970 (2013); Lyulin and Perevalov, JQSRT 177, 59 (2016) Ab-initio theory : Chubb *et al*, JQSRT 204, 42 (2018) Instrumentations for high-resolution spectroscopy; spectroscopic data; molecular databases HITRAN, GEISA, ... Cold molecules research : Aiello *et al*, Nat. Commun. 13, 7016 (2022)

- Search for variability of fundamental constants; understand nature of dark matter Uzan, Living Rev. Relativity 14, 2 (2011) Safronova *et al*, Rev. Mod. Phys. 90, 025008 (2018)

Applications of the acetylene molecular theory and spectroscopy

- Atmospheric science Whitby and Altwicker, Atmos. Environ. 12, 1289 (1978)

- Astrophysics

Didriche and Herman, Chem. Phys. Lett. 496, 1 (2010)

- Frequency metrology

Recommandation Comité Consultatif des Longueurs 1, 2009; Riehle et al, Metrologia 55, 188 (2018)

- Probe variations of fundamental constants Constantin, Vibrational Spectroscopy 85, 228 (2016)

- Photonic-molecular integration

Tharpa *et al*, Opt. Lett. 31, 2489 (2006); Takiguchi *et al*, Opt. Lett. 36, 1254 (2011) Zektzer *et al*, Laser Photonics Rev. 14, 1900414 (2020)

Fundamental Constants and Ultralight Dark Matter

- The Standard Model and the General Relativity : FC are free parameters of the theory Uzan, C. R. Physique 16, 576 (2015)
- CODATA 2018 recommended values of fundamental constants

https://physics.nist.gov/cuu/Constants/index.html

- Variability from couplings to cosmology and to local fields
- UDM: sub-eV scalar field $\phi(t) = \phi_0 \cos(\omega_{\phi} t)$; pulsation $\omega_{\phi} \cong \frac{m_{\phi} c^2}{\hbar}$; amplitude $\phi_0 = \sqrt{\frac{4\pi G \rho_{DM}}{\omega_{\phi}^2 c^2}}$
- Galactic halo model : $\rho_{DM} = 0.4 \text{ GeV/cm}^{-3}$; $v \approx 230 \frac{\text{km}}{\text{s}}$; $\sigma_v \approx 10^{-3}c$; $\tau_c = 10^{-4}/\omega_{\phi}$

Arvanitaki et al, PRD 91, 015015 (2015); Stadnik et al, PRL 115, 201301 (2015); Freese et al, RMP 85,1561 (2013)

=> DM-field induced variation of fundamental constants

- fermion X=(e,u,d,s) masses : $m_X(\phi) = m_X \left(1 + d_{m_X} \cdot \phi / \sqrt{c\hbar/8\pi G}\right)$

- fine structure constant : $\alpha(\phi) = \alpha \left(1 + d_{\alpha} \cdot \phi / \sqrt{c\hbar/8\pi G}\right)$

- QCD scale parameter : $\Lambda_{QCD}(\phi) = \Lambda_{QCD} \left(1 + d_g \cdot \phi / \sqrt{c\hbar/8\pi G} \right)$

- $\mu(m_e, \Lambda_{QCD}, m_X) = m_p/m_e$: $\mu(\phi) = \mu \left(1 - \left(d_{m_e} + d_g + 0.036d_{\widehat{m}}\right) \cdot \phi/\sqrt{c\hbar/8\pi G}\right)$ Damour and Donoghue, PRD 82, 084033 (2010)

• Variability of fundamental constants and AMO physics

=> Sensitivity of atomic, molecular and optical cavity resonance frequency:

$$\frac{\Delta f_{C,A,M}}{f_{C,A,M}} = Q_{\alpha}^{C,A,M} \frac{\Delta \alpha}{\alpha} + Q_{\mu}^{C,A,M} \frac{\Delta \mu}{\mu} + Q_{q}^{C,A,M} \frac{\Delta(\widehat{m}/\Lambda_{QCD})}{\widehat{m}/\Lambda_{QCD}}$$

• atomic optical transition $f_{A,opt} = C_{A,opt} \frac{\alpha^2 m_e c^2}{4\pi\hbar} \cdot F_{opt}(\alpha)$

• atomic hyperfine transition $f_{A,HF} = C_{A,HF} \frac{\alpha^2 m_e c^2}{4\pi\hbar} \left(g_i \left(m_q / \Lambda_{QCD} \right) \times m_e / m_p \right) \cdot F_{HF}(\alpha)$

- vibrational molecular transition : $f_{vib} = C_{vib} \frac{\alpha^2 m_e c^2}{4\pi\hbar} \sqrt{m_e/m_p}$
- rotational molecular transition : $f_{rot} = C_{rot} \frac{\alpha^2 m_e c^2}{4\pi\hbar} m_e / m_p$

• optical cavity resonance :
$$f_C = C_C \frac{\alpha m_e c^2}{\hbar} \cdot F_C(\alpha, m_X, \Lambda_{QCD})$$

Université

Searches for UDM with atoms and molecules

=> Atomic clocks comparisons

- oscillations from scalar fields of Rb/Cs clocks

Hees et al, Phys. Rev. Lett. 117, 061301 (2016)

=> Atomic clocks/cavity comparisons

- Sr clock/cavity network comparison by GPS

Wcislo et al, Sci. Adv. 4, eaau4869 (2018)

- Sr clock/cavity/H maser comparisons

Kennedy et al, 125, 201302 (2020)

=> Spectroscopy experiments

- Cs polarization spectroscopy

- I₂ Doppler/Doppler-free spectroscopy

F.L. Constantin

Ultralight Dark Matter Couplings from Acetylene Spectroscopy

p. 7/22

2) Potential from infrared precision measurements with ${}^{12}C_2H_2$

• Acetylene molecular theory

Université de Lille

Fundamental vibrational modes

←● ● ←	\mathbf{v}_1	3401.15 cm^{-1}	Symmetric
			CH stretching
	V2	1982.68 cm^{-1}	Symmetric CC
			stretching
	V 3	3313.20 cm^{-1}	Antisymmetric
			CH stretching
	V4	608.99 cm ⁻¹	Trans-bending
••••	v_5	729.21 cm ⁻¹	Cis-bending

Polyads

$$(v_1, v_2, v_3, v_4^{l_4}, v_5^{l_5})$$

$$k = l_4 + l_5; J$$

$$N_s = v_1 + v_2 + v_3$$

$$N_r = 5v_1 + 3v_2 + 5v_3 + v_4 + v_5$$

Hermann, Mol. Phys. 105, 2217 (2007)

Effective Hamiltonian

Vibrational term : $G_v[v] = \sum_s \omega_s (v_s + g_s/2) + \sum_{s \le s'} x_{ss'} (v_s + g_s/2) (v_{s'} + g_{s'}/2) + \sum_{k \le k'} g_{kk'} l_k l_{k'}$ Rotational term : $F_r(J,k) = B[v] (J(J+1) - k^2) - D[v] (J(J+1) - k^2)^2 + H[v] (J(J+1) - k^2)^3$ Hamiltonian matrix :

$$\begin{pmatrix} E[110(l^{1}l^{1})^{2}, J] + \frac{\rho_{45}}{4}J(J+1)(J(J+1)-2) & \frac{q_{4}+q_{5}}{2}\sqrt{J(J+1)(J(J+1)-2)} & 0 \\ \frac{q_{4}+q_{5}}{2}\sqrt{J(J+1)(J(J+1)-2)} & E[110(l^{1}l^{1})^{0}, J] + r_{45} & W \\ 0 & W & E[10l(0^{0}0^{0})^{0}, J] \end{pmatrix}$$

Unperturbed energy levels:

$$E[110(1^{1}1^{1})^{2}, J] = (v_{2} + g_{45}) + (B_{2} + \gamma^{45})(J(J+1) - 4) - (D_{2} + \delta^{45})(J(J+1) - 4)^{2} + (H_{2} + h^{45})(J(J+1) - 4)^{3}$$

$$E[110(1^{1}1^{1})^{0}, J] = (v_{2} - g_{45}) + (B_{2} - \gamma^{45})J(J+1) - (D_{2} - \delta^{45})(J(J+1))^{2} + (H_{2} - h^{45})(J(J+1))^{3}$$

$$E[101(0^{0}0^{0})^{0}, J] = v_{1} + B_{1}J(J+1) - D_{1}(J(J+1))^{2} + H_{1}(J(J+1))^{3}$$

$$E[000(0^{0}0^{0})^{0}, J] = B_{0}J(J+1) - D_{0}(J(J+1))^{2} + H_{0}(J(J+1))^{3}$$

Keppler et al, JMS 175, 411 (1996)

High-resolution spectroscopy

Jacquinet-Husson et al, JMS 327, 31 (2016)

• Sensitivity of the parameters to a variation of µ

Constant	Value (GHz)	K _A	Constant	Value (GHz)	K _A	and the second
B ₀	35.274974565(42)	-0.9974937(4)	X ₁₄	-416.1(42)	- 1	sensitivity coefficient
D ₀ (×10 ⁶)	48.77824(39)	- 2.01457(5)	X ₁₅	-315.4(48)	- 1	$K = d \ln A/d \ln \mu$
H ₀ (×10 ¹²)	57(18)	- 3	X ₂₂	-223.4(21)	- 1	$\mathbf{R}_A = \mathbf{u} \prod \mathcal{U} \mathbf{u} \prod \boldsymbol{\mu}$
α ₁ (×10 ³)	206.986(33)	- 1.5	x ₂₃	-184.7(33)	- 1	
α ₂ (×10 ³)	185.308(39)	- 1.5	x ₂₄	-381.6(30)	- 1	
α ₃ (×10 ³)	176.332(33)	- 1.5	x ₂₅	-45.9(22)	- 1	
α ₄ (×10 ³)	-40.5780(26)	- 1.5	X ₃₃	-828.3(36)	- 1	
α_{5} (×10 ³)	-66.9159(12)	- 1.5	X ₃₄	-300.4(42)	- 1	
γ ⁴⁴ (×10 ⁴)	-19.720(33)	- 2	X 35	-280.0(48)	- 1	
γ^{55} (×10 ⁴)	-32.954(15)	- 2	X 44	103.7(16)	- 1	
γ^{45} (×10 ⁴)	-67.641(12)	- 2	X 45	-66.9(30)	- 1	
β ₁ (×10 ⁸)	-42.45(27)	- 2.5	X 55	-71.2(16)	- 1	
β ₂ (×10 ⁸)	5.93(44)	- 2.5	g ₄₄	23.42939(27)	- 1	
β ₃ (×10 ⁸)	-40.99(40)	- 2.5	g ₄₅	198.00315(24)	- 1	
β ₄ (×10 ⁸)	103.13(23)	- 2.5	9 55	104.21008(19)	- 1	
$\beta_5 (\times 10^8)$	77.76(18)	- 2.5	r ₄₅	-187.03212(33)	- 1	
δ^{44} (×10 ¹⁰)	-517(18)	- 3	r _{J45} (×10 ⁴)	58.565(19)	- 2	
δ^{45} (×10 ¹⁰)	-1184(22)	- 3	ρ ₄₅ (×10 ⁸)	-52.79(90)	- 2	
δ^{55} (×10 ¹⁰)	-446(17)	- 3	q ₀₄ (×10 ³)	-157.3485(36)	- 1.5	
B ₁	34.8877668(57)	-0.991972(1)	q ₀₅ (×10 ³)	-139.7165(36)	- 1.5	
D ₁ (×10 ⁶)	47.8852(39)	- 2.0061(2)	q ₄₄ (×10 ⁵)	53.45(33)	- 2	
B ₂	35.002840(20)	-0.993256(1)	q ₄₅ (×10 ⁵)	-237.3(1.3)	- 2	
D ₂ (×10 ⁶)	48.107(60)	- 2.0277(36)	q ₅₄ (×10 ⁵)	-330.1(1.4)	- 2	
V ₁	196576.8494(18)	- 0.47159(9)	q ₅₅ (×10 ⁵)	-113.86(36)	- 2	
V ₂	198922.7020(21)	- 0.48114(7)	q _{J4} (×10 ⁸)	117.82(19)	- 2.5	
X ₁₁	-743.8(66)	- 1	q _{J5} (×10 ⁸)	115.351(69)	- 2.5	
x ₁₂	-350.2(39)	- 1	W	193.87198(96)	- 1	
X ₁₃	-3223(16)	- 1	W _J (×10 ⁵)	-101.93(60)	- 2	
				141 14 4		

Dependence on molecular structure parameters => sensitivity to μ -variation Constantin, Vibrational Spectr. 85, 228 (2016)

F.L. Constantin

Ultralight Dark Matter Couplings from Acetylene Spectroscopy

Université de Lille

-Hamiltonian approach to calculate sensitivity to µ-variation of ¹²C₂H₂ reference transitions

Constantin, Vibrational Spectr. 85, 228 (2016)

Prediction of acetylene frequency in function of μ & derivative of simulated data

=>Sensitivity of reference transition P(16) of the v_1+v_3 band of ${}^{12}C_2H_2$: K_{μ} =-0.468

• Principle of the experiment

• Sensitivity coefficients : $Q_{\alpha}^{L} \cong 1$; $Q_{\mu}^{L} \cong 0$; $Q_{\alpha}^{mol} = 2$; $Q_{\mu}^{mol} = -0.47$ Pašteka *et al*, PRL 122, 160801 (2019); Constantin, Vibrational Spectr. 85, 228 (2016)

• Response functions h^L , h^{mol} with high-frequency cutoffs

-frequency cutoffs : linewidth of the molecular line, delay in propagation of sound in the ULE spacer, ...

- Towards a network spectrometer
- REFIMEVE network :

1542 nm laser locked to ULE cavity/H maser
phase-stabilized fiber link

Cantin et al, New J. Phys. 23, 053027 (2021)

=> fractional stability $<10^{-15} (\tau/1s)^{-1/2}$ => fractional uncertainty $<10^{-14}$

=> Signal to PhLAM almost continuously at 194,400,084,500.000(25) kHz

Université de Lille

(CNrs)

- Broadband tuning with optical modulators
 -LiNbO₃ photonic platform
- Fast data acquisition at 1 Gsa/s level -fast DAQ and data storage
- Low-noise absorption detection -differential detection, noise-eater implementation,...

=> compact/robust molecular spectrometer => integration into the optical fiber network Constantin, Proc. IFCS-EFTF 2023 Paper Id 7354

F.L. Constantin

p.13/22

- Estimated sensitivity of the experiment
- Exp. A : recording a Doppler-free molecular line with $\delta f/f=10^{-14} (\tau/1s)^{-1/2}$
- Exp. B : recording a linear absorption molecular line with $\delta f/f=10^{-12} (\tau/1s)^{-1/2}$
- High-frequency cutoffs in the response of the experimental setup
- Sound propagation in ULE spacer f_{c1} =27 kHz
- Molecular transition sub-Doppler f_{c2A} =100 kHz and linear absorption f_{c2B} =4 GHz linewidths

=>improved limits on Compton frequencies domain by one order of magnitude

=>potential to improve the state-of-the-art constraints at low frequencies by averaging

2) Potential from frequency measurements of a MW acetylene clock

• Principle of the proposed experiment

Université de Lille

Measurement of a MW transition with enhanced sensitivity coefficient to µ-variation Constantin, Proc. CLEO-Europe/EQEC paper ED-1.4 (2023)

• ¹²C₂H₂ low energy levels and rovibrational interactions

Vibrational energy: v_4^{14} , v_5^{15}

+ $\sum_{i,j=4}^{5} x_{ij} \left(v_i + \frac{d_i}{2} \right) \left(v_j + \frac{d_j}{2} \right) +$

 $\sum_{i,j=4}^{5} g_{ij} \left(l_i + \frac{d_i}{2} \right) \left(l_j + \frac{d_j}{2} \right) + \dots$

 $\omega_i \sim 1/\sqrt{\mu}$; $x_{ij} \sim 1/\mu$; $g_{ij} \sim 1/\mu$, ...

 $E_V/hc = \sum_{i=4}^5 \omega_i \left(v_i + \frac{d_i}{2} \right)$

Université de Lille Phi AM Yu et al, Ap. J. 705, 786 (2009) 1500 $e/f,(0^{0},2^{2}),^{1}\Delta_{0}$ $= e,(0^{0},2^{0}), \overset{1}{\Sigma}_{g}^{+}/f,(1^{1},1^{1}), \overset{1}{\Sigma}_{u}^{-u}$ $= f,(1^{1},1^{1}), \overset{1}{\Sigma}_{u}^{-u}$ $= e,(1^{1},1^{1}), \overset{1}{\Sigma}_{u}^{+}$ 1450-1350-1300energy/hc (cm⁻¹ $= \overset{e,(2^{0},0^{0}), \overset{1}{\Sigma}_{g}^{+}}{\overset{e/f,(2^{2},0^{0}), \overset{1}{\Delta}_{\alpha}}}$ e/f,(0[°],1¹),¹П,, 700-

 $= e,(0^{0},0^{0}), {}^{1}\Sigma_{g}^{+}$

600 ±

CNrs

• ¹²C₂H₂ low energy levels and rovibrational interactions

Université de Lille

•MW transitions with enhanced sensitivity to µ-variation

Ultralight Dark Matter Couplings from Acetylene Spectroscopy

*

cnrs

• Systematic frequency shifts of a ¹²C₂H₂ microwave line

Transition $(v_4^{l_4}, v_5^{l_5}, J, sym) = (2^0, 0^0, 38, e^1 \Sigma_g^+) \rightarrow (1^1, 1^{-1}, 37, e^1 \Sigma_u^+)$ at 10363 MHz

Systematic effect		value	unc.
Cavity pulling		44 kHz	0.22 Hz
$f_{mol} - f_{mol,0}$	$=(f_{cav}-f_m)$	$_{lol}) \times (Q_{cav}/Q_{cav})$	$(2_{mol})^2$
param.:	$\alpha_{\rm T}$ = 5 x 10^(-6)/°C	
uncertainty:	Δ T=1 °C (<i>f</i>	$c_{av} - f_{mol}) =$	$= \Delta v / 10$
Viennet <i>et al ,</i> IEEE	TIM 21, 204	(1972)	
Pressure shift		246 Hz	0.19 Hz
extrapolation mea	as. v4+v5 ban	d at high T and	d low p
param.:	Т=624 К; р=0	.24 Pa; no J-d	ependence
uncertainty:	ΔT=1 K		
Dhyne <i>et al ,</i> JQSR	T 112, 969 (20)11)	
Zeeman shift		28 Hz	86 mHz
extrapolation mea	as. MVCD v4&	v5 band; eval	. M=J states
param.:	B=48 μT		
uncertainty:	ΔB =0.15 μT		
Tam <i>et al ,</i> J. Chem	n. Phys. 104 <i>,</i> 1	.813 (1996)	

Sensitivity to variations of fundamental constants

• Sensitivity coefficients : $Q_{\alpha}^{Cs} = 2.83$; $Q_{\mu}^{Cs} = -1$; $Q_{q}^{Cs} = 0.002$; $Q_{\alpha}^{mol} = 0$; $Q_{\mu}^{mol} = 109$; $Q_{q}^{mol} = 0$

Conclusion

- Accurate theory for modeling frequency & frequency shifts of ¹²C₂H₂ transitions
- > Accurate determination of sensitivity coefficients to μ -variation
- Enhanced sensitivity coefficients for MW transitions between near-resonant levels
- > Development of spectrometers at 194 THz using the REFIMEVE network with precision at levels of $(\delta f/f)^{\text{Doppler-free}} = 10^{-14} (\tau/1s)^{-1/2}$ and $(\delta f/f)^{\text{Doppler}} = 10^{-12} (\tau/1s)^{-1/2}$
- > Microwave molecular clock with $(\delta f/f)^A = 2.1 \times 10^{-10} (\tau/1s)^{-1/2}$ and $(\delta f/f)^B = 2.9 \times 10^{-11}$
- Potential to improve constraints on UDM couplings to SM particles

Thank you for your attention !

