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DM needed to explain astro/cosmo 
observations but not direct detection so far

3Fig. from US cosmic vision: new idea for Dark Matter, 2017, arXiv:1707:04591

• DM needed at: galactic scales (rotation curves, …), galaxy cluster (bullet 
cluster, …), cosmo (CMB, structure formation, …)



UltraLight Dark Matter needs to be a boson 
and it behaves classically

4

Calculation inspired from Tourrenc et al, arXiv:quantum-ph/0407187, 2004

• Occupation number (number of particles per volume of phase-space)
<latexit sha1_base64="D3nPT//q4YeYz8s51h/qgayZAn8="></latexit>
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• In our Galaxy

• This occupation number is larger than 1 if the DM mass is lower than 
~ 10 eV: Dark Matter lighter than 10 eV can only be made of boson

<latexit sha1_base64="VdMX4CFkxtkBc3YnEcd5SQrpkno=">AAACJnicbVDLSgMxFM3UV62vUZdugkVwY53Roi6LCroRKtgHdMaSSdM2NJkMSUYsQ7/Cn/AX3OrenYg78UtM2xG09cCFwzn3cu89QcSo0o7zYWVmZufmF7KLuaXlldU1e32jqkQsMalgwYSsB0gRRkNS0VQzUo8kQTxgpBb0zoZ+7Y5IRUV4o/sR8TnqhLRNMdJGatp7nuyKpseR7kqenF8NPBRFUtxDp1CEP/IFqe5jPrg9bNp5p+CMAKeJm5I8SFFu2l9eS+CYk1BjhpRquE6k/QRJTTEjg5wXKxIh3EMd0jA0RJwoPxm9NYA7RmnBtpCmQg1H6u+JBHGl+jwwncND1aQ3FP/1Aj6xWbdP/ISGUaxJiMeL2zGDWsBhZrBFJcGa9Q1BWFJzO8RdJBHWJtmcCcWdjGCaVA8K7lGheF3Ml07TeLJgC2yDXeCCY1ACl6AMKgCDB/AEnsGL9Wi9Wm/W+7g1Y6Uzm+APrM9vCZalxQ==</latexit>

⇢DM ⇡ 0.4GeV/cm3

- a bosonic scalar particle (i.e. a scalar field) 
      - a bosonic pseudo-scalar particle (i.e. an axion) 
     - a boson vector particle (i.e. a hidden photon)

• For m << eV: the occupation number is huge and such a bosonic field 
can be treated classically (no quantization)



Mainly two phenomenological signatures 
explored so far
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1. Oscillatory behaviour of the additional field

- oscillation with stochastic amplitude

- oscillation with amplitude depending on location (screening/
scalarization possible)

2. Topological defect: domain wall, …

- search for transients signatures in the data

- Search using fiber-link comparison of clocks or using GNSS 
Galileo data (+ dedicated SLR campaign)

see Roberts et al, Nature Com., 2017

see Arvanitaki et al, PRD, 2015

see Roberts et al, New. Journal of Phys. 2020 
       Bertrand et al, submitted to ASR, 2023



A massive scalar field or a massive vector field 
oscillates at its Compton frequency

• A massive scalar field • A massive vector field
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• When                (H=Hubble constant):
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', Xi ⇠ cosmt



If the new field makes DM, its oscillation 
amplitude is related to the DM energy density
• A massive scalar field • A massive vector field
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• The averaged stress-energy tensor

• Oscillates at Compton frequency
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• The scalar/vector field can be identified as a pressureless fluid

<latexit sha1_base64="O18Ru1H0TX8mqnIJ2LZqoeTMPwI=">AAACJnicbZDLSgMxFIYzXmu9VV26CRbBjWWmFHUjFN24VLC20GlLJj3TBpOZITkjlLFP4Uv4Cm51707EnfgkppeFVn8I/PznHM7JFyRSGHTdD2dufmFxaTm3kl9dW9/YLGxt35g41RxqPJaxbgTMgBQR1FCghEaigalAQj24PR/V63egjYijaxwk0FKsF4lQcIY26hQOfd2PKT2lfqgZz1S7TH0JId77d8Bpo+P6WvT6eN8uD7PysFMouiV3LPrXeFNTJFNddgpffjfmqYIIuWTGND03wVbGNAouYZj3UwMJ47esB01rI6bAtLLxt4Z03yZdGsbavgjpOP05kTFlzEAFtlMx7JvZ2ij8txaomc0YnrQyESUpQsQni8NUUozpiBntCg0c5cAaxrWwt1PeZ5YXWrJ5C8WbRfDX3JRL3lGpclUpVs+meHJkl+yRA+KRY1IlF+SS1AgnD+SJPJMX59F5dd6c90nrnDOd2SG/5Hx+AxHCpT8=</latexit>

⇢ =
m2

��� ~X0

���
2

2

⇒ a possible Dark matter candidate!



In experimental searches, we look for 
interactions between this new fields and SM

• Different couplings for different fields:

- scalar: dilaton couplings  (to EM, fermions, QCD): constants 
of Nature ( , fermion masses) depend on space/time [atomic 
clocks, UFF experiments, …] 

- Axion (pseudo-scalar): coupling to pseudo scalar Lagrangian 
density (EM, QCD, fermion). Recent result: mass of pions 
depend quadratically to the axion field [UFF violation] 

- Vector/Dark photon: kinetic mixing to EM  [modification of 
EM, …], coupling to the fermonic currents [B, B-L couplings, 
leading to a UFF violation]

di
α

χ

see Damour and Donoghue, PRD, 2011

see Kim and Perez, arXiv 2023

see Horns, JCAP, 2011 
        P. Fayet, PRD, 2018 



Vector Ultra Light Dark Matter:
A Dark Photon/Hidden Photon

9



A vector DM will interact with 
electromagnetism
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• An effective Lagrangian for the vector-matter coupling 

see Horns et al, JCAP, 2013 and references therein

• Kinetic mixing coupling 𝜒 characterises the coupling with EM

• Other couplings with matter can be considered like to the B-L current: 
leads to a violation of the UFF
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Lmat [ , gµ⌫ , Xµ] = LSM [ , gµ⌫ ]�
�

2
Fµ⌫Xµ⌫ + . . .

see e.g. Fayet, PRD, 2018

A hidden photon field will generate a small EM field and vice versa



Figure 6: Situation where a dish is located in an oscillating electric field induced by an oscillation Hidden
Photon field. Each infinitesimal small part of the dish will generate an outgoing plane wave whose wve
vector is perpendicular to the surface of the mirror, whose polarisation is parallel to the dish and whose
amplitude is such that the total electric field parallel to the surface of the mirror is vanishing. The total
electric field generated by the dish is therefore amplifified at the center of the dish.

area of the dish will generate an outgoing wave whose wave-vector is given by~kD = �wêr. The
outgoing electric wave generated by this small area of the dish is given by Eq. (51), i.e.

~Eout,D = �icw~Xk,De�i(wt�~kD ·(~x�~xD)) , (53)

with ~Xk,D the component parallel to the small area such that the electric field parallel to the dish
vanishes at the mirror’s surface. One has

~Xk,D = ~X �

⇣
~X · êr

⌘
êr =

 
Xx(1 � cos2 j sin2 q � cos j sin j sin2 q � cos j sin q cos q), (54)

Xy(1 � cos j sin j sin2 q � sin2 j sin2 q � sinj sin q cos q),

Xz(1 � cos j sin q cos q � sin j sin q cos q � cos2 q)

!
, (55)

where we have used the notation ~X = (Xx, Xy, Xz). At the center of the dish, ~x �~xD = �Rêr such
that~kD · (~x � ~xD) = wR (which is the same for all the elements of the dish). The total outgoing
electric field at the center of the dish is given by

~Eout(~x = 0, t) =
ZZ

dish
~Eout,D = R2

Z 2p

0
dj
Z qA

0
dq sin q~Eout,D , (56)

where qA is the apperture of the dish. This seems intuitive but not correct from a dimensional
point of view. The integration with respect to j is easy and leads to

~Eout(~x = 0, t) = �icwe�iw(t�kR) pR2

2

Z qA

0
dq sin q

 
X(3 + cos 2q), XY(3 + cos 2q), 4XZ sin2 q

!
.

(57)
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• Reminder: the amplitude is related to the DM density

An oscillating DM vector field will 
generate a small electric field

11

• Oscillating DM vector field                              will generate an EM field
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• Idea to search for such a DM: amplify this electric field using reflectors 
(boundary condition: creation of a classical propagating EM field)

Cavity Dish see Horns et al, JCAP, 2013see Gué et al, PRD, 2023

⃗E DM⃗E gen⃗E DM

⃗E gen



Use cavity and Rydberg spectro to search for Dark Photon
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See J. Gué, et al, PRD, 2023 work from J. Gué, PhD student

• 2 electric fields: (i) an injected field and (ii) the DM induced field

• Detection of  through the Stark effect  using Rydberg atomsE2 Δν ∝ E2

  E2 ∈ χ ⃗E in ⋅ ⃗X DM cos (ωDM − ωin) t + …

Enhance the signal amplitude
- Slowly evolving signal (detectable)

- Large range of DM mass explorable



Sensitivity analysis
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work from J. Gué, PhD student

• Analysis includes: cavity losses (Q-factor), statistical noise (Rydberg), 
systematic noise (RIN of injected field), …

New proposal of experiment: cavity can be used to search for Dark Photons 
(acts as a narrow band resonant detector)

More details in J. Gué, PRD, 2023



The SHUKET experiment at CEA 
SearcH for U(1) darK matter with an Electromagnetic Telescope

Pictures from P. Brun et al, PRL, 2019

negligible and the above condition applies. The shape of
the dish is spherical, so all the emitted waves converge
towards a single point. This approach has been proposed in
Ref. [6] as a mean to search for axions and HPs. In the case
of the SHUKET setup, the dish is a spherical cap of
R ¼ 32 m radius, with an area of 1.2 m2. The principle of
the experiment is sketched in Fig. 1, together with pictures
of the different parts.
Let us now estimate the expected power emitted from the

spherical cap. In this analysis, the HPs are considered as gas
of particles with random directions. Even if the correspond-
ing field has been produced initially in the same state on a
spatial scale larger than the apparatus, it is likely that
structure formations have randomized their directions
afterwards. So the emission is assumed to be unpolarized.
The results presented below include upper limits on the
power within some frequency bands, so the reader can relax
this hypothesis and easily translate our results using other
assumptions. The emitted power per unit surface is given
by hE⃗2

DMi evaluated at the metal-air interface. With ρ ¼
m2hjϕ⃗DMj2i=2 being the local DM density, one finds the
total emitted power from the spherical cap:

P
1 W

¼ 2.31 × 10−20
!

χ
10−12

"
2
!

ρ
0.3 GeV=cm3

"
: ð2Þ

This formula includes a factor 2=3 due to the average over
the random orientations of the HP. The power expressed in
Eq. (2) is emitted at a central frequency

f ¼ 0.24 GHz × ðm=μeVÞ; ð3Þ

with a modulation of δf=f ¼ 5 × 10−7 that is assumed
Gaussian. The signal is expected to be constant over time.
At the center of the sphere, a calibrated horn antenna is
placed and aligned. The alignment is performed using
optical light emitted slightly off the center of the sphere
and observed in the same plane, following the method

described in Ref. [7]. The same procedure is used to
determine the position of the center of the sphere, where
the antenna is placed.
The spherical cap is built on the same principle as

mirrors for gamma-ray astronomy described in Ref. [7],
where the glass has been replaced with aluminum. The
sphericity is estimated using visible light; we measured a
spread at the center of the sphere of the order of 1 mrad,
meaning that all the emission from the dish is contained at
its center in a disk of ∼3 cm radius. For centimetric waves,
the requirement on the sphericity is of course less stringent
and this shows the dish can be considered a perfect sphere
in our experiment. At 6 GHz the effective area of the
antenna is of the order of 50 cm2, so all the emission from
the spherical cap is contained. As the expected signal from
the spherical dish is a convergent spherical wave, no
difference in optical path is expected over the whole
surface, so diffraction effects are negligible. As shown in
Refs. [8,9], the small velocity of the experiment with
respect to the DM halo implies an angular shift of the
signal. This is, however, only a few microns in the case of
SHUKET, so again, the whole signal is concentrated in our
antenna. The latter measures one polarization and we make
the conservative assumption that there is no power from the
other polarization. The signal being unpolarized under our
assumptions, the antenna will collect half the power emitted
from the dish.
The whole setup has been built in a basement on the

CEA Paris-Saclay campus, where electromagnetic nuisance
is relatively low at the studied frequencies. The antenna is
shielded with metallic foam, and a background subtraction
is performed as described below. The antenna is a cali-
brated double ridged horn sensitive between 1 and 18 GHz.
The lobe of the antenna is characterized by the manufac-
turer, and in the band relevant to this analysis, all the
electromagnetic signal in one polarization from the spheri-
cal cap is converted to output power. The field of view of
the antenna includes regions around the spherical cap, so
part of the measured power comes from the thermal
emission of concrete walls. Estimates of the thermal
emission of the mirror itself show it is negligible at the
level of sensitivity of SHUKET. To minimize the influence
of parasitic power, the measurements are performed in two
steps, with the antenna at the center of the metallic dish
(ON runs) and with the antenna a few meters off axis (OFF
runs). In practice the antenna is left in place and the
spherical cap is tilted to displace its center. The power
measurements from ON and OFF runs are subtracted in the
data analysis phase. Note that distant sources of power have
their signal focused in the focal plane of the dish, at half its
radius, thus far from our antenna. In addition, it has been
checked that a signal at the relevant frequencies is effec-
tively detected by our receiver when power is emitted from
the focal point at R=2 towards the dish. The signal is not
detected when the antenna is off axis in the OFF position.

FIG. 1. Top: Principle of the SHUKETexperiment. Bottom left:
Picture of the spherical cap; reflective patches are to help with the
alignment procedure. Bottom right: Horn antenna with the
shielding.
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1.2
 m

32 m

Mirror Horn antenna + shielding

Amplifiers
+

Spectrum analyzer

Achieved 10-22 W/Hz sensitivity 
Constraints on hidden photons dark matter

Figure 6: Situation where a dish is located in an oscillating electric field induced by an oscillation Hidden
Photon field. Each infinitesimal small part of the dish will generate an outgoing plane wave whose wve
vector is perpendicular to the surface of the mirror, whose polarisation is parallel to the dish and whose
amplitude is such that the total electric field parallel to the surface of the mirror is vanishing. The total
electric field generated by the dish is therefore amplifified at the center of the dish.

area of the dish will generate an outgoing wave whose wave-vector is given by~kD = �wêr. The
outgoing electric wave generated by this small area of the dish is given by Eq. (51), i.e.

~Eout,D = �icw~Xk,De�i(wt�~kD ·(~x�~xD)) , (53)

with ~Xk,D the component parallel to the small area such that the electric field parallel to the dish
vanishes at the mirror’s surface. One has

~Xk,D = ~X �

⇣
~X · êr

⌘
êr =

 
Xx(1 � cos2 j sin2 q � cos j sin j sin2 q � cos j sin q cos q), (54)

Xy(1 � cos j sin j sin2 q � sin2 j sin2 q � sinj sin q cos q),

Xz(1 � cos j sin q cos q � sin j sin q cos q � cos2 q)

!
, (55)

where we have used the notation ~X = (Xx, Xy, Xz). At the center of the dish, ~x �~xD = �Rêr such
that~kD · (~x � ~xD) = wR (which is the same for all the elements of the dish). The total outgoing
electric field at the center of the dish is given by

~Eout(~x = 0, t) =
ZZ

dish
~Eout,D = R2

Z 2p

0
dj
Z qA

0
dq sin q~Eout,D , (56)

where qA is the apperture of the dish. This seems intuitive but not correct from a dimensional
point of view. The integration with respect to j is easy and leads to

~Eout(~x = 0, t) = �icwe�iw(t�kR) pR2

2

Z qA

0
dq sin q

 
X(3 + cos 2q), XY(3 + cos 2q), 4XZ sin2 q

!
.

(57)
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• For a spherical dish, the electric field will be 
focused at the center + non-relevant electric 
field will be focused at the focal point



First result: SHUKET puts a stringent constraint 
on the kinetic mixing parameter

with a Gaussian spectral shape. The power carried out by
the signal [Eq. (2)] corresponds to the integral over
frequencies. The width of the signal is fixed according
to δf=f ¼ 5 × 10−7. Error bars are assigned to the data
points along the following procedure: it is the rms of the
residual distribution measured on a sliding window of 1000
points. As an illustration, Fig. 3 shows an enlargement of
the distribution of power residuals around 6.4 GHz,
together with a mock DM signal. In this specific example,
the signal is excluded at the 3σ level.
At each frequency, the presence of a residual power in

the form of a DM signal is searched. No signal has been
found. A χ2 analysis is performed to determine the
confidence levels for the upper limit on the signal. The
results are presented in Fig. 4 at the 95% confidence level
(C.L.). The average exclusion on a DM signal power is of
the order of 10−18 W. The drift of the sensitivity below
5.8 GHz and around 6.6 GHz is explained by a small shift
downwards in the ON power distribution in the corre-
sponding frequency range. The improved limit at 6.331
525 GHz yields an upper limit of 2.1 × 10−21 W.
Interpretation.—Equation (2) is used to interpret the

upper limits of Fig. 4 in terms of the mixing parameter χ.
Assuming a typical value for the local DM density
ρ ¼ 0.3 GeV=cm3, and that hidden photons account for
all of the DM, the upper limit on χ is of the order of
5 × 10−12 for HP masses between 20.8 and 28.3 μeV. The
results are presented in Fig. 5, together with other con-
straints. The blue region is excluded from the analysis of
the cosmic microwave background and the absence of
anomalous distortions; see Ref. [11]. The exclusion regions
on the left come from axion-search cavity experiments
RBF [12,13], UF [14], and ADMX [15,16]. The results
from the axion cavity experiments are interpreted here in
terms of HPs following the method of Ref. [11]. The same

hypothesis as above regarding the velocity distribution of
the HP DM is applied. The purple line on the right is a
narrow band search for HPs performed with a television
antenna and a plane mirror [17]. Other similar searches
have been performed in optical range using optical mirrors
[18,19] sensitive to ∼10−10–10−11 mixing parameter val-
ues, and at higher frequency with a plane mirror-dish
system [20] sensitive to ∼10−8. Both these experiments
yield constraints at masses higher than 5 × 10−5 eV and lie
outside the range of Fig. 5.
The SHUKET results are shown in red; both the

wideband and the narrow band searches are included in
Fig. 5. In string theory models with compactifications of
heterotic orbifold, the mixing parameter is expected to be of
the order of χ ∼ 10−3 [3,5]. In that case our results severely
constrain the DM density in the mass range. In that case,
and if the HP mass is in the range of sensitivity of
SHUKET, the proportion of DM of that type would be
less than 10−16. Should the value of the mixing parameter
be χ ¼ 10−11, as suggested in Ref. [4] in the case of large
volume string compactification, our results would imply
this type of DM contributes to less than 44% to the local
DM density.
Summary.—We built an experiment dedicated to

the search for hidden photons in the mass range
20.8–28.3 μeV. Given the sensitivity to an excess power
of the order of 10−22 W=Hz in a frequency band spanning
from 5 to 6.8 GHz and the absence of anomalous signals,
we have been able to exclude values of a power excess
above 10−18 W. This excludes values of the kinetic mixing
parameter above 5 × 10−12 at the 95% C.L. for hidden
photon masses between 20.8 and 28.3 μeV. This mass
range is particularly well motivated for axion dark matter,
so a possible upgrade of SHUKET would be to magnetize
the dish in order to be sensitive to axions as well.
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FIG. 4. 95% confidence level upper limits on the dark matter
signal power. The vertical line at 6.331 GHz corresponds to the
narrow band search.
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• Improved data analysis considering signal stochasticity: improves slightly 
the constraints 

Recent update from CEA-SYRTE collaboration

based on a methodology presented in E. Savalle et al, PRL, 2021

work from J. Gué, PhD student

• Improved modelling of the experiment including

- Diffraction of the EM fi

- matching with the EM mode of the antenna

This improved realistic modelling leads to ~ 1 order of magnitude loss of 
sensitivity (unfortunately).

• Using this realistic modelling: optimization of the experiment: work in 
progress

J. Gué, paper to be submitted soon

• New runs in the 10-20 GHz frequency range performed at CEA

• Improvements: 
      - new low-noise amplifiers 
      - new spectrum analyses



Scalar Ultra Light Dark Matter: the 
dilaton

17

Remark: the QCD coupling of the axion implies that the pions mass 
depends quadratically on the axion.

 ⇒ Part of the following discussion can be extended to the axion

see Kim and Perez, arXiv 2023



A scalar DM is expected to break the 
equivalence principle

18

• An effective Lagrangian for the scalar-matter coupling 

• This leads to a space-time dependance of some constants of Nature to 
the scalar field

see Damour and Donoghue, PRD, 2010
• Couplings usually considered: 

  - linear in 𝜑: lowest order expansion (cfr Damour-Donoghue) 

  - quadratic in 𝜑: lowest order if there is a Z2 symmetry (cfr Stadnik et al)

Can be interpreted as a signature of a violation of the Einstein Equivalence 
Principle: oscillations of the constants of Nature!

Lmat [gµ⌫ , ,'] = LSM [gµ⌫ , ] + 'i

2

4d(i)e

4e2
Fµ⌫F

µ⌫ � d(i)g �3
2g3

FA
µ⌫F

µ⌫
A �

X

j=e,u,d

⇣
d(i)mj

+ �mjd
(i)
g

⌘
mj ̄j j

3

5

↵(') = ↵
⇣
1 + d(i)e 'i

⌘

⇤3(') = ⇤3

⇣
1 + d(i)g 'i

⌘
mj(') = mj

⇣
1 + d(i)mj

'i
⌘

for j = e, u, d

see also Arvanitaki et al, PRD 2015, Hees et al, PRD, 2018



Two experiments developed at SYRTE

19



Search for a periodic signal in Cs/Rb 
comparison

20

• Cs/Rb FO2 atomic fountain data from SYRTE: high accuracy and high 
stability, data used from 2008

• Search for a periodic signal in the data

A. Hees, J. Guéna, M. Abgrall, S. Bize, P. Wolf, PRL, 2016

using Scargle’s method, see Scargle ApJ, 1982

No positive detection

see J. Guéna et al, Metrologia, 2012 and J. Guéna et al., IEEE UFFC, 2012
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⌫ (~r , t)� ⌫ (~r , t)

⌫(~r , t )� ⌫(~r , t )

Search for a periodic signal in a Mach-
Zender interferometer

21

• New type of experiment proposed. Simplified principle:

see Savalle et al, PRL 2021
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A 'i
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Oscillations of the 
scalar field

• Interpretation: comparison of an atomic frequency with itself in the past
• Main advantage: explored frequency range ~ kHz-MHz while standard 

clocks are limited to 100 mHz
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The DAMNED experiment (DArk 
Matter from Non Equal Delays)
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• In practice:

- the “clock” is a laser cavity (both length and laser frequency oscillate)
- the length of the fiber oscillates
- the refractive index of the fiber oscillates

see Savalle et al, PRL, 2021

Fiber - 54km

Cavity

• First experiment built @SYRTE (E. Savalle’s PhD with P-E Pottie, F. Franck, 
E. Cantin) and data analyzed taken into account the stochasticity of the 
signal

• no significant periodic signal is detected in the 10-200 kHz frequency band



Constraints on the linear couplings
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Update from Hees et al, PRD, 2018

Results from:
- Rb/Cs: Hees et al, PRL, 2016
- BACON: Nature, 2021
- JILA: Kennedy et al, PRL, 2020
- Eöt-Wash: Wagner et al, CQG, 2012
- MICROSCOPE: Bergé et al, PRL, 2018
- DAMNED: Savalle et al, PRL 2021
- GEO600: Vermeulen et al, Nature, 2021

Assuming the DM density to be constant over the whole Solar System (0.4 GeV/cm3)
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Atom interferometers are sensitive to such 
DM candidates as well

24

work from J. Gué, PhD student

• Calculations performed following method from Storey and 
Cohen-Tannoudji, J. Phys, 1994. Exemple for a Mach-Zender:

• Dilaton DM field impacts:

• Classical trajectories of atoms

• Rest mass/transition energy (Lagrangian + kick velocity)

• Laser reference and frequency



Phase shift induced by DM in various AI setup 
and sensitivity of various experiments 

25

work from J. Gué, PhD student

• Standard Mach-Zender: used in Standford with 85Rb and 87Rb 
and for a gravimeter in Wuhan using 87Rb

• Future AION10 gradiometer: 2 Mach-Zender with Large 
Momentum Transfer stacked at different elevations

see P. Asenbaum et al, PRL, 2020 for standford and Z. Hu et al, PRA, 2020 for Wuhan

see e.g. Badurina et al, PRD, 2022

• Future MAGIS-like experiment: 2 colocated Mach-Zender with 
Large Momentum Transfer using 2 isotopes: advantageous for 
UFF tests 

see e.g. Abe et al, Quantum Sc. and Tech., 2021
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FIG. 6: Current constraints on all the dilatonic couplings of interest in this paper : de (top left), dme � dg (top
right), dm̂ � dg (bottom left), d�m � dg (bottom right) from [2, 3, 65, 66], with 95% confidence level. The expected
sensitivities of AION-10 are shown in dark blue dashed line while the expected sensitivity of the setup variations we
propose, noted ”SPID” are respectively shown in green, light blue, purple and magenta dashed lines, depending on
the isotope pair used. The light orange background represents already constrained regions of the parameter space

(see text).

estimates on experimental reach when limited by statis-
tical noise.

Additionally, we propose a setup variation based on
the atom interferometric sequence originally proposed in
[13] and used in gradiometers experiments, such as AION
[14]. This variation, whose acronym is SPID (for Sin-
gle Photon transition Isotope Di↵erential atom interfer-
ometry) involves two di↵erent isotopes and the addition
of an EOM to take into account the isotope frequency
shift, which does not allow us to use the exact same
laser source for both interferometers, thus not reducing
to zero the laser phase noise. Nonetheless, using AION-
10 parameters, we show that this variation of experiment
would be able to constrain both ALP coupling to gluons
and dilaton couplings to photons, electrons and quarks
de, dme � dg, d�m � dg to remarkable levels compared to
existing laboratory experiments and future experiments,
including AION-10. Indeed, while AION-10 would not be
sensitive to the axion-gluon at first order, the SPID ex-
periment would improve the best laboratory constraints
by roughly 2 orders of magnitude over 4 orders of mag-
nitude mass range. Regarding the dilatonic couplings,
the SPID experiment would largely surpass the expected
sensitivity of AION-10 on de, dm̂�dg, d�m�dg couplings
over the full mass range, while being more sensitive than
AION-10 on the dme�dg coupling at masses m�  10�15

eV/c2.
Despite being extremely sensitive to various DM

candidates-SM fields couplings, the SPID experiment
proposed in the present paper would also test the uni-
versality of free fall, with unprecedented level. Assuming

the set of parameters described in Section. IV 5, the free
fall acceleration on ground g = 9.81 m/s2, a total cycle
time Tcycle = 10 s, to account for the atom preparation,
free fall and measurement, the corresponding constraint
on the Eötvös parameter would reach

⌘ =
1

gke↵T
2

s
S
SPID
�

2Tcycle
⇡ 4⇥ 10�16

, (55)

which would improve the current bound from MICRO-
SCOPE [3] by a factor 4. Evidently, this estimate does
not take into account additional DC e↵ects on the iso-
topes, such as gravity gradients, temperature gradients
(blackbody radiation), wave-front aberrations, magnetic
field gradients, etc...
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Appendix A: Full calculation of the two photon
transition AI phase shift

We consider an atom A whose nominal rest mass
and transition frequency m

0
A,!

0
A are perturbed

Results: search for dilaton

26

work from J. Gué, PhD student

Low sensitivity from Stanford and Wuhan, good sensitivity of AION10 and even better 
with MAGIS-like scenario



Results: search for axion
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work from J. Gué, PhD student

• The mass of the pion oscillate due to the QCD coupling of 
the axion see Kim and Perez, arXiv 2023

Low sensitivity from Stanford and Wuhan, good sensitivity of AION10 and even better 
with MAGIS-like scenario
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• Searches for Dark Matter of mass < 1 eV (bosonic) is very active

• Several models exist: scalar field, axion, dark photon, … with different 
phenomenology: oscillations (possible screening), topological default, … 

• We (SYRTE + collaborations) are involved in: 
- theoretical exploration, predictions of such models 
- proposition of new experiments 
- accurate modelling, optimization of existing experiments 
- perform some experiments 
- dedicated data analysis (sometimes tricky: stochasticity of signal)

• Very recent results: - new proposal for an experiment to search for DP

    - modelling/optimisation of SHUKET (DP)

    - impact of dilatons/axions on UFF measurements and AI

    - GASTON: search for transient DM candidate with Galileo



Are there other signatures to be 
searched in lab data that can help 

constraining DE models? 
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Astronomy & cosmology
(gravitational waves, SNIa, CMB, 
structure formation, galactic dynamics, 
…)
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GNSS, … )
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High energy
(particle physics: CERN-
LHC, Fermilab, DESY, …)

Picture inspired by Altschul et al, Adv, in Space Res. 55, 501, 2015
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FIG. 2. Top: DM velocity distribution from Eq. (12). Bottom: DM frequency distribution from Eq. (14). The green filled area
has a width of 3 FWHM and its range is given by Eq. (19) with a = 3. This is the frequency domain over which the scalar
field is modeled in Eq. (16).

The number of terms involved in the sum depends on the frequency resolution of the experiment �f = 1
Texp

and of

the typical width of the frequency distribution. As can be noticed from Fig. 2, the full width half max (FWHM) of the
frequency distribution, a good estimator of its width, is given by ⇠ 10�6m'c2/h. In practice, we use a sampling of the
DM frequency distribution that covers a FWHM starting at the cut-o↵ frequency. In other words, the frequencies fj
included in the sum from Eq. (16) are the Fourier frequencies (i.e. fj = j�f = jfs/N with fs the sampling frequency
and N the number of measurements) contained in the range


m'c2

h
,
m'c2

h

�
1 + a⇥ 10�6

��
, (19)

where in practice we use a = 3. The frequency region covered by this sampling is indicated by the green shaded area
in Fig. 2.

The energy density for a scalar field is given by

⇢' =
c2

8⇡G


'̇2 +

c4m2

~2 '2

�
. (20)

For the scalar field from Eq. (16), this quantity is a stochastic quantity. We can perform an ensemble average of the
energy density for the scalar field using the distribution from Eqs. (18) to demonstrate that average energy density
for the scalar field is the local DM energy density, i.e. h⇢'i = ⇢DM.

Modeling of the phase measurements

Eq. (4) from the main part of the paper gives the relationship between the phase measurement and the scalar field.
If we take into account the fact that the scalar field has several frequencies (see Eq. (16)) and taking into account
only the contribution from de and dme , the phase measurements are modeled as

��(t) = !0T0 +
X

j

↵j

⇣
deÃj + dmeĀj

⌘
cos

⇣
!jt+ �j + �̃j

⌘
, (21)

The field has a frequency distribution due to 
the DM velocity distribution 

• The oscillation frequency depends on the velocity

• DM velocity distribution - Stochastic distribution 
- Coherence time ~ 106 osc.
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• Low-mass spin-0 particles form a coherently oscillating 

classical field ߮ ݐ = ߮଴cos ݉ఝܿଶݐ/԰ , with energy density   

ఝߩ ൎ ݉ఝ
ଶ߮଴ଶ/2 ୈ୑,୪୭ୡୟ୪ߩ) ൎ 0.4 GeV/cmଷ)

• Coherently oscillating field, since cold ఝܧ) ൎ ݉ఝܿଶ)

• Τȟܧఝ ఝܧ ~ Τݒఝଶ ܿଶ~ 10ି଺ ֜ ߬ୡ୭୦~ Τ2Ɏ ȟܧఝ ~ 10଺ ୭ܶୱୡ

Probability distribution function of ࣐૙
(Rayleigh distribution)

߮଴

Evolution of ࣐૙ with time

Τݐ ɒୡ୭୦

Low-mass Spin-0 Dark Matter
• Low-mass spin-0 particles form a coherently oscillating 

classical field ߮ ݐ = ߮଴cos ݉ఝܿଶݐ/԰ , with energy density   

ఝߩ ൎ ݉ఝ
ଶ߮଴ଶ/2 ୈ୑,୪୭ୡୟ୪ߩ) ൎ 0.4 GeV/cmଷ)

• Coherently oscillating field, since cold ఝܧ) ൎ ݉ఝܿଶ)

• Τȟܧఝ ఝܧ ~ Τݒఝଶ ܿଶ~ 10ି଺ ֜ ߬ୡ୭୦~ Τ2Ɏ ȟܧఝ ~ 10଺ ୭ܶୱୡ

Probability distribution function of ࣐૙
(Rayleigh distribution)

߮଴

Evolution of ࣐૙ with time

Τݐ ɒୡ୭୦

Low-mass Spin-0 Dark Matter

Stochastic modelling important 
for the data analysisSee Centers et al, arXiv1905.13650 and Foster et al, PRD, 2018 

        Savalle et al, PRL 2021
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• Linear coupling

4

way to parametrize a possible variation of any atomic
frequency X to variations of the constants of Nature is
to use the following parametrization (see e.g. [41, 42])

d lnX = [k↵]X d ln↵+ [kµ]X d lnµ+ [kq]X d lnmq/⇤3 ,
(12)

where µ = me/mp is the ration of the electron mass over
the proton mass, mq is the mass of the light quarks (as-
sumed to be equals), and ki are the sensitivity coe�cients
of the specific transition X. The atomic and nuclear cal-
culations to derive these sensitivity coe�cients have been
achieved in [40, 41, 43, 44] and the obtained numerical
values can be found in Table I from [42].

While the parametrization (12) is widely used, another
equivalent parametrization is useful since closer to the
form of the interaction Lagrangian from Eq. (2)

d lnX = [k↵]X d ln↵+ [kµ]X d lnme/⇤3

+
⇥
k0q
⇤
X
d lnmq/⇤3 , (13)

with k0q = kq � 0.049(8)(3) [45]. These sensitivity coe�-
cients play a role equivalent to the ones of the dilatonic
charges introduced in the previous section.

The coupling of the scalar field to a clock working on
the transition X is then encoded in the coupling function
X which is defined by

d lnX = (i)
X d

�
'i
�
, (14)

and can be expressed as

(i)
X =

1

i
[k↵]X d(i)e +

1

i
[kµ]X

⇣
d(i)me

� d(i)g

⌘

+
1

i

⇥
k0q
⇤
X

⇣
d(i)m̂ � d(i)g

⌘
. (15)

IV. SOLUTIONS FOR THE SCALAR FIELD

The space-time evolution of the scalar field depends
on the distribution of matter. In this manuscript, we
will consider spherically symmetric extended bodies that
will be characterized by a radius RA and by a constant
matter density ⇢A. The reason for this simplification be-
comes obvious when considering the case of the quadratic
coupling: the non-linearity of this case complexifies the
derivations and the solutions (see Appendix B). Never-
theless, the case of a two-layers spherical body is also
considered in Appendix B.

At first order, we model usual matter as a pressureless
perfect fluid whose stress-energy tensor is given by Tµ⌫ =
c2⇢uµu⌫ , where ⇢ is the matter density and u⌫ the 4-
velocity of the fluid 4. For this matter modeling, the

4 Corrections due to the pressure will arise at the post-Newtonian
order and can safely be neglected here.

source term in the Klein-Gordon equation (5b)) writes
as

� = �↵(')⇢c2 , (16)

where ↵ is given by Eq. (7).
Having in mind that the scalar field’s perturbation

must be small if it depicts dark matter (see SEC. IVC),
equation (5b) can be written at leading order as

1

c2
'̈(t,x)��'(t,x) = �

4⇡G

c2
↵A(')⇢A(x)�

c2m2
'

~2 '(t,x) ,

(17)
where the dot denotes a derivative with respect to the
coordinate time t and � is the 3-dimensional flat Lapla-
cian. In this equation, we have neglected terms that are
of the order of O(|hµ⌫ |) (with hµ⌫ = gµ⌫ � ⌘µ⌫). Indeed,
a linearized version of the Einstein equation (5a) shows
that the metric will be generated by sources that will
contribute as ⇠ GMA

c2r ⌧ 1 and by terms that are propor-
tional to '2

0 ('0 being the typical amplitude of the scalar
field). If the scalar field is associated to DM, one can
show that '0 ⇠ 6 ⇥ 10�31 eV/m' [37, 38] which shows
that '2

0 ⌧ 1 for scalar field masses above 10�30 eV. Un-
der this assumption, the space-time behavior of the scalar
field will be governed by Eq. (17) whose solution will be
given in this section. Nevertheless, the explicit limit at
which this assumption breaks down has been carefully
taken into account when deriving the constraints on the
parameters di in Section VI.

A. Linear coupling

In the case of a linear coupling, the function ↵A(') =

↵̃(1)
A appearing in Eq. (17) is independent of the scalar

field and the general solution is a sum of free waves and a
Yukawa-type scalar field generated by the central body.
Details about the derivation of the results are given in
Appendix B. The general expression of the scalar field is
given by

'(1)(t,x) = '0 cos (k.x� !t+ �)� s(1)A

GMA

c2r
e�r/�' ,

(18)

where |k|2 + c2m2
'/~2 = !2/c2 and

�' =
~

cm'
. (19)

The constant s(1)A is the e↵ective scalar charge of the ex-
tended body and is given by

s(1)A = ↵̃(1)
A I

✓
RA

�'

◆
, (20)

with the function I(x) given by

I(x) = 3
x coshx� sinhx

x3
.

A fifth force generated by a 
body - UFF tests are more 

sensitive

DM, atomic sensors are 
more sensitive

see A. Hees et al, PRD, 2018

• Quadratic coupling: no more Yukawa interaction, richer 
phenomenology

Can be screened or 
enhanced (scolarisation)

Both atomic sensors and UFF tests are sensitive 
to this behaviour
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(12)

where µ = me/mp is the ration of the electron mass over
the proton mass, mq is the mass of the light quarks (as-
sumed to be equals), and ki are the sensitivity coe�cients
of the specific transition X. The atomic and nuclear cal-
culations to derive these sensitivity coe�cients have been
achieved in [40, 41, 43, 44] and the obtained numerical
values can be found in Table I from [42].

While the parametrization (12) is widely used, another
equivalent parametrization is useful since closer to the
form of the interaction Lagrangian from Eq. (2)

d lnX = [k↵]X d ln↵+ [kµ]X d lnme/⇤3

+
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with k0q = kq � 0.049(8)(3) [45]. These sensitivity coe�-
cients play a role equivalent to the ones of the dilatonic
charges introduced in the previous section.

The coupling of the scalar field to a clock working on
the transition X is then encoded in the coupling function
X which is defined by

d lnX = (i)
X d

�
'i
�
, (14)
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IV. SOLUTIONS FOR THE SCALAR FIELD

The space-time evolution of the scalar field depends
on the distribution of matter. In this manuscript, we
will consider spherically symmetric extended bodies that
will be characterized by a radius RA and by a constant
matter density ⇢A. The reason for this simplification be-
comes obvious when considering the case of the quadratic
coupling: the non-linearity of this case complexifies the
derivations and the solutions (see Appendix B). Never-
theless, the case of a two-layers spherical body is also
considered in Appendix B.

At first order, we model usual matter as a pressureless
perfect fluid whose stress-energy tensor is given by Tµ⌫ =
c2⇢uµu⌫ , where ⇢ is the matter density and u⌫ the 4-
velocity of the fluid 4. For this matter modeling, the

4 Corrections due to the pressure will arise at the post-Newtonian
order and can safely be neglected here.

source term in the Klein-Gordon equation (5b)) writes
as

� = �↵(')⇢c2 , (16)

where ↵ is given by Eq. (7).
Having in mind that the scalar field’s perturbation

must be small if it depicts dark matter (see SEC. IVC),
equation (5b) can be written at leading order as
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where the dot denotes a derivative with respect to the
coordinate time t and � is the 3-dimensional flat Lapla-
cian. In this equation, we have neglected terms that are
of the order of O(|hµ⌫ |) (with hµ⌫ = gµ⌫ � ⌘µ⌫). Indeed,
a linearized version of the Einstein equation (5a) shows
that the metric will be generated by sources that will
contribute as ⇠ GMA

c2r ⌧ 1 and by terms that are propor-
tional to '2

0 ('0 being the typical amplitude of the scalar
field). If the scalar field is associated to DM, one can
show that '0 ⇠ 6 ⇥ 10�31 eV/m' [37, 38] which shows
that '2

0 ⌧ 1 for scalar field masses above 10�30 eV. Un-
der this assumption, the space-time behavior of the scalar
field will be governed by Eq. (17) whose solution will be
given in this section. Nevertheless, the explicit limit at
which this assumption breaks down has been carefully
taken into account when deriving the constraints on the
parameters di in Section VI.

A. Linear coupling

In the case of a linear coupling, the function ↵A(') =

↵̃(1)
A appearing in Eq. (17) is independent of the scalar

field and the general solution is a sum of free waves and a
Yukawa-type scalar field generated by the central body.
Details about the derivation of the results are given in
Appendix B. The general expression of the scalar field is
given by

'(1)(t,x) = '0 cos (k.x� !t+ �)� s(1)A

GMA
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where |k|2 + c2m2
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The constant s(1)A is the e↵ective scalar charge of the ex-
tended body and is given by

s(1)A = ↵̃(1)
A I
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with the function I(x) given by

I(x) = 3
x coshx� sinhx

x3
.

A fifth force generated by a 
body - UFF tests are more 

sensitive

DM, atomic sensors are 
more sensitive

see A. Hees et al, PRD, 2018

• Quadratic coupling: no more Yukawa interaction, richer 
phenomenology
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• Comparison of atomic frequencies:

• UFF measurements

7

2. Quadratic coupling

The signature produced by the scalar field in the case of
a quadratic coupling between the scalar field and matter
is richer, it reads

Y (t,x) = K +�(2)'
2
0

2

✓
1� s(2)A

GMA

c2r

◆2

(30)

+�(2)'
2
0

2
cos (2!t+ 2�)

✓
1� s(2)A

GMA

c2r

◆2

where ! = m'c2/~. This signature is quite unique and
is the combination of two distinct terms. The first one is
space-dependent and could be searched for by comparing
spatial and terrestrial clocks located at various positions,
and/or by monitoring the evolution of the frequency of
a given clock with respect to the position of the Earth
in the gravitional field of the Sun. The second term is
an oscillating term whose amplitude depends on the lo-
cation in the gravitational field. In particular, if one
considers two clocks located at the surface of the Earth
(r = R�), the oscillating part of the signal becomes (from
Eqs. (B21), (B26) and (B27c))

Ỹ (t) =
�(2)

↵̃(2)
�

c2R�
6GM�

'2
0 tanh

2

 s

3↵̃(2)
�

GM�
c2R�

!
(31)

⇥ cos (2!t+ 2�) .

B. Tests of the Universality of Free Fall

The motion of a test mass can be derived from the
action (6), or equivalently from the Lagrangian

LT = �mT (')c

r
�gµ⌫

dxµ

dt

dx⌫

dt
. (32)

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only in-
terested in the first order part of the acceleration that is
composition dependent. We can therefore use the follow-
ing approximation for the Lagrangian

LT = �mT (')c
2

r
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v2

c2
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,

(33)
where, as for the Klein-Gordon equation, we neglect
terms that are of the order of O (|hµ⌫ |). A simple Euler-
Lagrange derivation gives the first order contribution to
the violation of the UFF:

[aT ]EEP = �↵T (')
⇥
c2r'+ v'̇

⇤
, (34)

where ↵T is the coupling defined by Eq. (7). The di↵er-
ential acceleration between two bodies A and B located
at the same position is therefore given by

[�a]A�B = aA(t,x)� aB(t,x)

= � (↵A(')� ↵B('))
⇥
c2r'+ v'̇

⇤
. (35)

1. Linear coupling

In the case of a linear coupling, the di↵erential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C can be determined from Eq. (18) and is given by

[�a]A�B = �↵̄(1)'0

�
c2k � !v

�
sin (k.x� !t+ �)

��↵̄(1)s(1)C e�r/�'
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r3
x , (36)

where �↵̄(1) =
⇣
↵̄(1)
A � ↵̄(1)

B

⌘
with ↵̄(1) given in Eq. (11).

The first line represents an oscillating variation of the
di↵erential acceleration of the two bodies. This oscilla-
tion is induced by the oscillating DM. The amplitude of
this UFF violation is linearly proportional to the cou-

pling constant d(1)i . The second line is a regular fifth
force di↵erential acceleration that is due to the coupling
of the two bodies to the scalar field generated by the cen-
tral body. The amplitude of the violation of the UFF is

proportional to the square of the d(1)i coe�cients. This
term can be identified from standard UFF measurements
by using the Eötvös parameter ⌘ defined as

⌘ = 2
|aA � aB |

|aA + aB |
, (37)

by (see also [35])
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2. Quadratic coupling

The di↵erential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (21) and is given by

[�a]A�B = �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆"
�

GMc

r3
x s(2)C

�
GMc

r3
xs(2)C cos (2!t+ 2�) (39)

+

✓
1� s(2)C

GMc

c2r

◆
!v sin (2!t+ 2�)

#

where �↵̄(2) =
⇣
↵̄(2)
A � ↵̄(2)

B

⌘
with ↵̄(2) given in Eq. (11).

The first line correspond to a di↵erential acceleration pro-
portional to the Newtonian acceleration. This term can
be identified from standard UFF measurements by using
the Eötvös parameter ⌘ defined by Eq. (37) with

⌘ = s(2)C �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆
. (40)
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2. Quadratic coupling

The signature produced by the scalar field in the case of
a quadratic coupling between the scalar field and matter
is richer, it reads

Y (t,x) = K +�(2)'
2
0

2

✓
1� s(2)A

GMA

c2r

◆2

(30)

+�(2)'
2
0

2
cos (2!t+ 2�)

✓
1� s(2)A

GMA

c2r

◆2

where ! = m'c2/~. This signature is quite unique and
is the combination of two distinct terms. The first one is
space-dependent and could be searched for by comparing
spatial and terrestrial clocks located at various positions,
and/or by monitoring the evolution of the frequency of
a given clock with respect to the position of the Earth
in the gravitional field of the Sun. The second term is
an oscillating term whose amplitude depends on the lo-
cation in the gravitational field. In particular, if one
considers two clocks located at the surface of the Earth
(r = R�), the oscillating part of the signal becomes (from
Eqs. (B21), (B26) and (B27c))

Ỹ (t) =
�(2)

↵̃(2)
�

c2R�
6GM�

'2
0 tanh

2

 s

3↵̃(2)
�

GM�
c2R�

!
(31)

⇥ cos (2!t+ 2�) .

B. Tests of the Universality of Free Fall

The motion of a test mass can be derived from the
action (6), or equivalently from the Lagrangian

LT = �mT (')c

r
�gµ⌫

dxµ

dt

dx⌫

dt
. (32)

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only in-
terested in the first order part of the acceleration that is
composition dependent. We can therefore use the follow-
ing approximation for the Lagrangian

LT = �mT (')c
2

r
1�

v2

c2
⇡ �mT (')c

2

✓
1�

v2

2c2

◆
,

(33)
where, as for the Klein-Gordon equation, we neglect
terms that are of the order of O (|hµ⌫ |). A simple Euler-
Lagrange derivation gives the first order contribution to
the violation of the UFF:

[aT ]EEP = �↵T (')
⇥
c2r'+ v'̇

⇤
, (34)

where ↵T is the coupling defined by Eq. (7). The di↵er-
ential acceleration between two bodies A and B located
at the same position is therefore given by

[�a]A�B = aA(t,x)� aB(t,x)

= � (↵A(')� ↵B('))
⇥
c2r'+ v'̇

⇤
. (35)

1. Linear coupling

In the case of a linear coupling, the di↵erential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C can be determined from Eq. (18) and is given by

[�a]A�B = �↵̄(1)'0

�
c2k � !v

�
sin (k.x� !t+ �)

��↵̄(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
GMC

r3
x , (36)

where �↵̄(1) =
⇣
↵̄(1)
A � ↵̄(1)

B

⌘
with ↵̄(1) given in Eq. (11).

The first line represents an oscillating variation of the
di↵erential acceleration of the two bodies. This oscilla-
tion is induced by the oscillating DM. The amplitude of
this UFF violation is linearly proportional to the cou-

pling constant d(1)i . The second line is a regular fifth
force di↵erential acceleration that is due to the coupling
of the two bodies to the scalar field generated by the cen-
tral body. The amplitude of the violation of the UFF is

proportional to the square of the d(1)i coe�cients. This
term can be identified from standard UFF measurements
by using the Eötvös parameter ⌘ defined as

⌘ = 2
|aA � aB |

|aA + aB |
, (37)

by (see also [35])

⌘ = �↵̃(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
. (38)

2. Quadratic coupling

The di↵erential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (21) and is given by

[�a]A�B = �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆"
�

GMc

r3
x s(2)C

�
GMc

r3
xs(2)C cos (2!t+ 2�) (39)

+

✓
1� s(2)C

GMc

c2r

◆
!v sin (2!t+ 2�)

#

where �↵̄(2) =
⇣
↵̄(2)
A � ↵̄(2)

B

⌘
with ↵̄(2) given in Eq. (11).

The first line correspond to a di↵erential acceleration pro-
portional to the Newtonian acceleration. This term can
be identified from standard UFF measurements by using
the Eötvös parameter ⌘ defined by Eq. (37) with

⌘ = s(2)C �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆
. (40)

See A. Hees et al, PRD, 2018
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2. Quadratic coupling

The signature produced by the scalar field in the case of
a quadratic coupling between the scalar field and matter
is richer, it reads

Y (t,x) = K +�(2)'
2
0

2

✓
1� s(2)A

GMA

c2r

◆2

(30)

+�(2)'
2
0

2
cos (2!t+ 2�)

✓
1� s(2)A

GMA

c2r

◆2

where ! = m'c2/~. This signature is quite unique and
is the combination of two distinct terms. The first one is
space-dependent and could be searched for by comparing
spatial and terrestrial clocks located at various positions,
and/or by monitoring the evolution of the frequency of
a given clock with respect to the position of the Earth
in the gravitional field of the Sun. The second term is
an oscillating term whose amplitude depends on the lo-
cation in the gravitational field. In particular, if one
considers two clocks located at the surface of the Earth
(r = R�), the oscillating part of the signal becomes (from
Eqs. (B21), (B26) and (B27c))

Ỹ (t) =
�(2)

↵̃(2)
�

c2R�
6GM�

'2
0 tanh

2

 s

3↵̃(2)
�

GM�
c2R�

!
(31)

⇥ cos (2!t+ 2�) .

B. Tests of the Universality of Free Fall

The motion of a test mass can be derived from the
action (6), or equivalently from the Lagrangian

LT = �mT (')c

r
�gµ⌫

dxµ

dt

dx⌫

dt
. (32)

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only in-
terested in the first order part of the acceleration that is
composition dependent. We can therefore use the follow-
ing approximation for the Lagrangian

LT = �mT (')c
2

r
1�

v2

c2
⇡ �mT (')c

2

✓
1�

v2

2c2

◆
,

(33)
where, as for the Klein-Gordon equation, we neglect
terms that are of the order of O (|hµ⌫ |). A simple Euler-
Lagrange derivation gives the first order contribution to
the violation of the UFF:

[aT ]EEP = �↵T (')
⇥
c2r'+ v'̇

⇤
, (34)

where ↵T is the coupling defined by Eq. (7). The di↵er-
ential acceleration between two bodies A and B located
at the same position is therefore given by

[�a]A�B = aA(t,x)� aB(t,x)

= � (↵A(')� ↵B('))
⇥
c2r'+ v'̇

⇤
. (35)

1. Linear coupling

In the case of a linear coupling, the di↵erential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C can be determined from Eq. (18) and is given by

[�a]A�B = �↵̄(1)'0

�
c2k � !v

�
sin (k.x� !t+ �)

��↵̄(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
GMC

r3
x , (36)

where �↵̄(1) =
⇣
↵̄(1)
A � ↵̄(1)

B

⌘
with ↵̄(1) given in Eq. (11).

The first line represents an oscillating variation of the
di↵erential acceleration of the two bodies. This oscilla-
tion is induced by the oscillating DM. The amplitude of
this UFF violation is linearly proportional to the cou-

pling constant d(1)i . The second line is a regular fifth
force di↵erential acceleration that is due to the coupling
of the two bodies to the scalar field generated by the cen-
tral body. The amplitude of the violation of the UFF is

proportional to the square of the d(1)i coe�cients. This
term can be identified from standard UFF measurements
by using the Eötvös parameter ⌘ defined as

⌘ = 2
|aA � aB |

|aA + aB |
, (37)

by (see also [35])

⌘ = �↵̃(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
. (38)

2. Quadratic coupling

The di↵erential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (21) and is given by

[�a]A�B = �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆"
�

GMc

r3
x s(2)C

�
GMc

r3
xs(2)C cos (2!t+ 2�) (39)

+

✓
1� s(2)C

GMc

c2r

◆
!v sin (2!t+ 2�)

#

where �↵̄(2) =
⇣
↵̄(2)
A � ↵̄(2)

B

⌘
with ↵̄(2) given in Eq. (11).

The first line correspond to a di↵erential acceleration pro-
portional to the Newtonian acceleration. This term can
be identified from standard UFF measurements by using
the Eötvös parameter ⌘ defined by Eq. (37) with

⌘ = s(2)C �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆
. (40)
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2. Quadratic coupling

The signature produced by the scalar field in the case of
a quadratic coupling between the scalar field and matter
is richer, it reads

Y (t,x) = K +�(2)'
2
0

2

✓
1� s(2)A

GMA

c2r

◆2

(30)

+�(2)'
2
0

2
cos (2!t+ 2�)

✓
1� s(2)A

GMA

c2r

◆2

where ! = m'c2/~. This signature is quite unique and
is the combination of two distinct terms. The first one is
space-dependent and could be searched for by comparing
spatial and terrestrial clocks located at various positions,
and/or by monitoring the evolution of the frequency of
a given clock with respect to the position of the Earth
in the gravitional field of the Sun. The second term is
an oscillating term whose amplitude depends on the lo-
cation in the gravitational field. In particular, if one
considers two clocks located at the surface of the Earth
(r = R�), the oscillating part of the signal becomes (from
Eqs. (B21), (B26) and (B27c))

Ỹ (t) =
�(2)

↵̃(2)
�

c2R�
6GM�

'2
0 tanh

2

 s

3↵̃(2)
�

GM�
c2R�

!
(31)

⇥ cos (2!t+ 2�) .

B. Tests of the Universality of Free Fall

The motion of a test mass can be derived from the
action (6), or equivalently from the Lagrangian

LT = �mT (')c

r
�gµ⌫

dxµ

dt

dx⌫

dt
. (32)

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only in-
terested in the first order part of the acceleration that is
composition dependent. We can therefore use the follow-
ing approximation for the Lagrangian

LT = �mT (')c
2

r
1�

v2

c2
⇡ �mT (')c

2

✓
1�

v2

2c2

◆
,

(33)
where, as for the Klein-Gordon equation, we neglect
terms that are of the order of O (|hµ⌫ |). A simple Euler-
Lagrange derivation gives the first order contribution to
the violation of the UFF:

[aT ]EEP = �↵T (')
⇥
c2r'+ v'̇

⇤
, (34)

where ↵T is the coupling defined by Eq. (7). The di↵er-
ential acceleration between two bodies A and B located
at the same position is therefore given by

[�a]A�B = aA(t,x)� aB(t,x)

= � (↵A(')� ↵B('))
⇥
c2r'+ v'̇

⇤
. (35)

1. Linear coupling

In the case of a linear coupling, the di↵erential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C can be determined from Eq. (18) and is given by

[�a]A�B = �↵̄(1)'0

�
c2k � !v

�
sin (k.x� !t+ �)

��↵̄(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
GMC

r3
x , (36)

where �↵̄(1) =
⇣
↵̄(1)
A � ↵̄(1)

B

⌘
with ↵̄(1) given in Eq. (11).

The first line represents an oscillating variation of the
di↵erential acceleration of the two bodies. This oscilla-
tion is induced by the oscillating DM. The amplitude of
this UFF violation is linearly proportional to the cou-

pling constant d(1)i . The second line is a regular fifth
force di↵erential acceleration that is due to the coupling
of the two bodies to the scalar field generated by the cen-
tral body. The amplitude of the violation of the UFF is

proportional to the square of the d(1)i coe�cients. This
term can be identified from standard UFF measurements
by using the Eötvös parameter ⌘ defined as

⌘ = 2
|aA � aB |

|aA + aB |
, (37)

by (see also [35])

⌘ = �↵̃(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
. (38)

2. Quadratic coupling

The di↵erential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (21) and is given by

[�a]A�B = �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆"
�

GMc

r3
x s(2)C

�
GMc

r3
xs(2)C cos (2!t+ 2�) (39)

+

✓
1� s(2)C

GMc

c2r

◆
!v sin (2!t+ 2�)

#

where �↵̄(2) =
⇣
↵̄(2)
A � ↵̄(2)

B

⌘
with ↵̄(2) given in Eq. (11).

The first line correspond to a di↵erential acceleration pro-
portional to the Newtonian acceleration. This term can
be identified from standard UFF measurements by using
the Eötvös parameter ⌘ defined by Eq. (37) with

⌘ = s(2)C �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆
. (40)
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2. Quadratic coupling

The signature produced by the scalar field in the case of
a quadratic coupling between the scalar field and matter
is richer, it reads

Y (t,x) = K +�(2)'
2
0

2

✓
1� s(2)A

GMA

c2r

◆2

(30)

+�(2)'
2
0

2
cos (2!t+ 2�)

✓
1� s(2)A

GMA

c2r

◆2

where ! = m'c2/~. This signature is quite unique and
is the combination of two distinct terms. The first one is
space-dependent and could be searched for by comparing
spatial and terrestrial clocks located at various positions,
and/or by monitoring the evolution of the frequency of
a given clock with respect to the position of the Earth
in the gravitional field of the Sun. The second term is
an oscillating term whose amplitude depends on the lo-
cation in the gravitational field. In particular, if one
considers two clocks located at the surface of the Earth
(r = R�), the oscillating part of the signal becomes (from
Eqs. (B21), (B26) and (B27c))

Ỹ (t) =
�(2)

↵̃(2)
�

c2R�
6GM�

'2
0 tanh

2

 s

3↵̃(2)
�

GM�
c2R�

!
(31)

⇥ cos (2!t+ 2�) .

B. Tests of the Universality of Free Fall

The motion of a test mass can be derived from the
action (6), or equivalently from the Lagrangian

LT = �mT (')c

r
�gµ⌫

dxµ

dt

dx⌫

dt
. (32)

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only in-
terested in the first order part of the acceleration that is
composition dependent. We can therefore use the follow-
ing approximation for the Lagrangian

LT = �mT (')c
2

r
1�

v2

c2
⇡ �mT (')c

2

✓
1�

v2

2c2

◆
,

(33)
where, as for the Klein-Gordon equation, we neglect
terms that are of the order of O (|hµ⌫ |). A simple Euler-
Lagrange derivation gives the first order contribution to
the violation of the UFF:

[aT ]EEP = �↵T (')
⇥
c2r'+ v'̇

⇤
, (34)

where ↵T is the coupling defined by Eq. (7). The di↵er-
ential acceleration between two bodies A and B located
at the same position is therefore given by

[�a]A�B = aA(t,x)� aB(t,x)

= � (↵A(')� ↵B('))
⇥
c2r'+ v'̇

⇤
. (35)

1. Linear coupling

In the case of a linear coupling, the di↵erential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C can be determined from Eq. (18) and is given by

[�a]A�B = �↵̄(1)'0

�
c2k � !v

�
sin (k.x� !t+ �)

��↵̄(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
GMC

r3
x , (36)

where �↵̄(1) =
⇣
↵̄(1)
A � ↵̄(1)

B

⌘
with ↵̄(1) given in Eq. (11).

The first line represents an oscillating variation of the
di↵erential acceleration of the two bodies. This oscilla-
tion is induced by the oscillating DM. The amplitude of
this UFF violation is linearly proportional to the cou-

pling constant d(1)i . The second line is a regular fifth
force di↵erential acceleration that is due to the coupling
of the two bodies to the scalar field generated by the cen-
tral body. The amplitude of the violation of the UFF is

proportional to the square of the d(1)i coe�cients. This
term can be identified from standard UFF measurements
by using the Eötvös parameter ⌘ defined as

⌘ = 2
|aA � aB |

|aA + aB |
, (37)

by (see also [35])

⌘ = �↵̃(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
. (38)

2. Quadratic coupling

The di↵erential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (21) and is given by

[�a]A�B = �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆"
�

GMc

r3
x s(2)C

�
GMc

r3
xs(2)C cos (2!t+ 2�) (39)

+
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1� s(2)C

GMc

c2r

◆
!v sin (2!t+ 2�)

#

where �↵̄(2) =
⇣
↵̄(2)
A � ↵̄(2)

B

⌘
with ↵̄(2) given in Eq. (11).

The first line correspond to a di↵erential acceleration pro-
portional to the Newtonian acceleration. This term can
be identified from standard UFF measurements by using
the Eötvös parameter ⌘ defined by Eq. (37) with

⌘ = s(2)C �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆
. (40)

 that depends on r (directly 
related to Eöt-Wash and 
MICROSCOPE results)

⌘ 2 terms that oscillate, amplitude 
depends on position

oscillation, amplitude depends 
on position 

 Position dependent: clocks on 
elliptic orbit? Comparison clock 
in space versus clock on ground?

 They are all sensitive to screening/scalarization
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Constraints on the quadratic couplings

34
see A. Hees et al, PRD, 2018

Impact of screening

Impact of scalarization
Being in space is favorable ! Scalar field 

tends to vanish at the Earth surface



A vector DM will interact with 
electromagnetism

35

• An effective Lagrangian for the vector-matter coupling 

see Horns et al, JCAP, 2013 and references therein

• Kinetic mixing coupling 𝜒 characterises the coupling with EM

• Other couplings with matter can be considered like to the B-L current: 
leads to a violation of the UFF

<latexit sha1_base64="aCu7XhQVSon1Acy3bhv2QueYxWU=">AAACt3icbVFdixMxFM2MX2v92KqPvgxWQXAtM8vix4OwKIiIQmW3u4VmHDJpphM2yYzJjVBC/pr/w1d/iensFLTbCyGHc++593Ju2QpuIE1/R/G16zdu3tq7Pbhz9979/eGDh2emsZqyKW1Eo2clMUxwxabAQbBZqxmRpWDn5cWHdf78J9OGN+oUVi3LJVkqXnFKIFDF8BeWBGpKRPKl6KCWLnweC1bBHE8MP1gWDkuLlfUHDncTXSks87MgsB5rvqwhf7ejz8nX3W16yUtcaULdpqdmC49pzb13h/7j903x1sgN7V/gRQOmGI7ScdpFchVkPRihPibF8E/QUSuZAiqIMfMsbSF3RAOngvkBtoa1hF6QJZsHqIhkJnfdCj55FphFUjU6PAVJx/6rcEQas5JlqFxbYLZza3JnrpRbk6F6kzuuWgtM0cvBlRUJNMn6iMmCa0ZBrAIgVPOwe0JrEtyEcOpBMCXbtuAqODscZ6/GR9+ORsfve3v20GP0BD1HGXqNjtEnNEFTRKOn0efoJDqN38ZFXMX1ZWkc9ZpH6L+If/wFHxneRA==</latexit>

Lmat [ , gµ⌫ , Xµ] = LSM [ , gµ⌫ ]�
�

2
Fµ⌫Xµ⌫ + . . .

see e.g. Fayet, PRD, 2018

• The hidden photon X𝜇 will mix with the usual photon A𝜇

A hidden photon field will generate a small EM field and vice versa

<latexit sha1_base64="VioGA6n4YrXpVEpHCvkutoMNjUw="></latexit> ⇤Aµ = ��⇤Xµ

⇤Xµ +m2Xµ = ��⇤Aµ



• As a reminder: the amplitude of oscillation is related to the DM energy 
density

An oscillating DM vector field will 
generate a small electric field
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• Oscillating DM vector field                              will generate an EM field

and in particular a small electric field

see Horns et al, JCAP, 2013 and references therein

<latexit sha1_base64="8EVsjkmzYbgZ6y8Om8Mrnh3nABU=">AAACEnicbVDLSgMxFM3UV62vUVfiJlgEV2VGiroRim5cVrAP6AxDJs20oUlmSDKFMhR/wl9wq3t34tYfcOuXmGlnoa0HLvdwzr3c5IQJo0o7zpdVWlldW98ob1a2tnd29+z9g7aKU4lJC8cslt0QKcKoIC1NNSPdRBLEQ0Y64eg29ztjIhWNxYOeJMTnaCBoRDHSRgrsI29MMOzC63kPHOjhWEGuK4FddWrODHCZuAWpggLNwP72+jFOOREaM6RUz3US7WdIaooZmVa8VJEE4REakJ6hAnGi/Gz2hSk8NUofRrE0JTScqb83MsSVmvDQTHKkh2rRy8V/vZAvXNbRlZ9RkaSaCDw/HKUM6hjm+cA+lQRrNjEEYUnN2yEeIomwNinmobiLESyT9nnNvajV7+vVxk0RTxkcgxNwBlxwCRrgDjRBC2DwCJ7BC3i1nqw36936mI+WrGLnEPyB9fkDIL2cMA==</latexit>

~X = ~X0 cosmt
<latexit sha1_base64="F/gmm5KGFEHICQEnAdOW22CXYlU=">AAACDnicbVDLSsNAFJ34rPUVFVduBovgxpJIUTdC1Y3LCvYBTSmT6U07dDIJM5NCCf0Hf8Gt7t2JW3/BrV/iNM1CWw9cOPece7mX48ecKe04X9bS8srq2npho7i5tb2za+/tN1SUSAp1GvFItnyigDMBdc00h1YsgYQ+h6Y/vJv6zRFIxSLxqMcxdELSFyxglGgjde1DbwQU3+BrfObRAcNZ2+raJafsZMCLxM1JCeWode1vrxfRJAShKSdKtV0n1p2USM0oh0nRSxTEhA5JH9qGChKC6qTZ+xN8YpQeDiJpSmicqb83UhIqNQ59MxkSPVDz3lT81/PDucs6uOqkTMSJBkFnh4OEYx3haTa4xyRQzceGECqZ+R3TAZGEapNg0YTizkewSBrnZfeiXHmolKq3eTwFdISO0Sly0SWqontUQ3VEUYqe0Qt6tZ6sN+vd+piNLln5zgH6A+vzBx2ZmpM=</latexit>

~A = �� ~X

<latexit sha1_base64="ecsQpx4+ThNHaC74OFr4sG+sKx8="></latexit>

~EDM = �@t ~A = �m� ~X0 sinmt

<latexit sha1_base64="O18Ru1H0TX8mqnIJ2LZqoeTMPwI=">AAACJnicbZDLSgMxFIYzXmu9VV26CRbBjWWmFHUjFN24VLC20GlLJj3TBpOZITkjlLFP4Uv4Cm51707EnfgkppeFVn8I/PznHM7JFyRSGHTdD2dufmFxaTm3kl9dW9/YLGxt35g41RxqPJaxbgTMgBQR1FCghEaigalAQj24PR/V63egjYijaxwk0FKsF4lQcIY26hQOfd2PKT2lfqgZz1S7TH0JId77d8Bpo+P6WvT6eN8uD7PysFMouiV3LPrXeFNTJFNddgpffjfmqYIIuWTGND03wVbGNAouYZj3UwMJ47esB01rI6bAtLLxt4Z03yZdGsbavgjpOP05kTFlzEAFtlMx7JvZ2ij8txaomc0YnrQyESUpQsQni8NUUozpiBntCg0c5cAaxrWwt1PeZ5YXWrJ5C8WbRfDX3JRL3lGpclUpVs+meHJkl+yRA+KRY1IlF+SS1AgnD+SJPJMX59F5dd6c90nrnDOd2SG/5Hx+AxHCpT8=</latexit>

⇢ =
m2

��� ~X0

���
2

2



In a DM vector field, a dish antenna will generate 
an EM field that will be focused in its center 
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• the electric field // to a conductor surface vanishes (boundary condition)

• The surface of the dish will generate a propagating electric field to vanish 
the DM electric field

see Horns et al, JCAP, 2013 and references therein
Figure 6: Situation where a dish is located in an oscillating electric field induced by an oscillation Hidden
Photon field. Each infinitesimal small part of the dish will generate an outgoing plane wave whose wve
vector is perpendicular to the surface of the mirror, whose polarisation is parallel to the dish and whose
amplitude is such that the total electric field parallel to the surface of the mirror is vanishing. The total
electric field generated by the dish is therefore amplifified at the center of the dish.

area of the dish will generate an outgoing wave whose wave-vector is given by~kD = �wêr. The
outgoing electric wave generated by this small area of the dish is given by Eq. (51), i.e.

~Eout,D = �icw~Xk,De�i(wt�~kD ·(~x�~xD)) , (53)

with ~Xk,D the component parallel to the small area such that the electric field parallel to the dish
vanishes at the mirror’s surface. One has

~Xk,D = ~X �

⇣
~X · êr

⌘
êr =

 
Xx(1 � cos2 j sin2 q � cos j sin j sin2 q � cos j sin q cos q), (54)

Xy(1 � cos j sin j sin2 q � sin2 j sin2 q � sinj sin q cos q),

Xz(1 � cos j sin q cos q � sin j sin q cos q � cos2 q)

!
, (55)

where we have used the notation ~X = (Xx, Xy, Xz). At the center of the dish, ~x �~xD = �Rêr such
that~kD · (~x � ~xD) = wR (which is the same for all the elements of the dish). The total outgoing
electric field at the center of the dish is given by

~Eout(~x = 0, t) =
ZZ

dish
~Eout,D = R2

Z 2p

0
dj
Z qA

0
dq sin q~Eout,D , (56)

where qA is the apperture of the dish. This seems intuitive but not correct from a dimensional
point of view. The integration with respect to j is easy and leads to

~Eout(~x = 0, t) = �icwe�iw(t�kR) pR2

2

Z qA

0
dq sin q

 
X(3 + cos 2q), XY(3 + cos 2q), 4XZ sin2 q

!
.

(57)
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• For a spherical dish, the electric field 
will be focused at the center + non-
relevant electric field will be focused at 
the focal point

• Sensitivity

JCAP04(2013)016

detector. Of course, to reduce avoidable background it is surely best to put the whole setup,
dish and detector in the centre in a shielding box.7 It should be stressed that although the
experiment performs a broadband search the signal from HP dark matter would be a very
narrow peak which should be easily distinguishable from background sources.

For a first experiment one could take a standard dish antenna and simply move the
receiver/detector from the focal point to twice the distance.

Finally an important (perhaps the most important) feature of this technique is that it
is broadband. Given a detector with a suitably low background and high enough sensitivity,
we can do a search for hidden photon over the whole frequency/mass range to which the
detector is sensitive without the need to adjust the experiment. This is in stark contrast
to a cavity experiment which achieves its Q factor enhanced sensitivity only in a tiny range
⇠ !/Q around the resonance frequency and for which one has to slowly scan through the
desired mass range.

Let us now estimate the sensitivity of such an experiment. In principle the concentration
mechanism is e↵ective as long as di↵raction is small, i.e. as long as the wavelength is much
smaller than the size of the dish antenna (this is also the limit when the ray-approximation
is reasonable). This limits us to masses

m�0 & few ⇥ 1µeV

✓
m

rdish

◆
. (2.22)

Aside from this the only limitations are:

• The dish should indeed provide a boundary condition of a vanishing electric field, i.e.
it has to be a good reflector. For radio frequencies this can be achieved by using
metal dishes. In the IR to near UV mirrors are obvious examples of reflective surfaces.
Therefore we can easily cover a wide range of masses with this technique.

• The surface of the dish has to be smooth and well focused to the centre at length
scales of the wavelength we want to probe, i.e. it can be taken as spherical to a good
approximation.

• Thermal emission from the mirror provides a background for our measurement. In
contrast to our signal it has a broad spectrum. Thermal emission is highly suppressed
by the high reflectivity of the mirror and moreover it can be reduced by cooling the
dish. Moreover, thermal radiation is emitted isotropically and will not be focused on
the detector. This translates into a relative suppression with respect to the signal of
the order of the detector area divided by the dish area.

In the radio frequency regime very small powers can be detected. Powers as low as
10�26W seem feasible and 10�23W are certainly possible. Using eq. (2.19) this can easily be
translated into a sensitivity to the kinetic mixing parameter,

�sens = 4.5⇥ 10�14

✓
Pdet

10�23W

◆ 1
2
✓
0.3GeV/cm3

⇢CDM,halo

◆ 1
2
✓
1m2

Adish

◆ 1
2

 p
2/3

↵

!
. (2.23)

7Note that the shielding itself can get excited by the HP dark matter field and emit electromagnetic
radiation which can interfere with our measurements. We will briefly consider these e↵ects in section 4, but
from what we learned so far (this radiation will also be perpendicular to the box surface) we can already
conclude that we can arrange the geometry in such a way that interference is minimized.

– 7 –

coeff. characterising the polarization 
of the DM field wrt the dish



A scalar field with a quartic potential can form 
topological defects

• Spatial evolution of :φ2

position

w
φ2

0

• Width related to the mass of the scalar field w ∼ 1/m

• Amplitude related to DM energy density φ2
0 ∼ ρDM

• Cross the Earth with a velocity (DM velocity distribution)


