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DM needed to explain astro/cosmo
observations but not direct detection so far

* DM needed at: galactic scales (rotation curves, ...), galaxy cluster (bullet
cluster, ...), cosmo (CMB, structure formation, ...)

Dark Sector Candidates, and Search Technigues
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Fig. from US cosmic vision: new idea for Dark Matter, 2017, arXiv:1707:04591



Ultralight Dark Matter needs to be a boson
and it behaves classically

 Occupation number (number of particles per volume of phase-space)

(8 67T2h3,0[)1\/[

ne  m*clu3

Calculation inspired from Tourrenc et al, arXiv:quantum-ph/0407187, 2004

* Inour Galaxy ppm ~ 0.4GeV/cm’

e This occupation number is larger than | if the DM mass is lower than
~ |0 eV: Dark Matter lighter than 10 eV can only be made of boson

- a bosonic scalar particle (i.e. a scalar field)
- a bosonic pseudo-scalar particle (i.e. an axion)
- a boson vector particle (i.e.a hidden photon)

e For m << eV:the occupation number is huge and such a bosonic field
can be treated classically (no quantization)



Mainly two phenomenological signatures
explored so far

|. Oscillatory behaviour of the additional field see Arvanitaki et al. PRD, 2015
- oscillation with stochastic amplitude

- oscillation with amplitude depending on location (screening/
scalarization possible)

2. Topological defect: domain wall, ...

see Roberts et al, Nature Com., 2017

- search for transients signatures in the data

- Search using fiber-link comparison of clocks or using GNSS
Galileo data (+ dedicated SLR campaign)

see Roberts et al, New. Journal of Phys. 2020

Bertrand et al, submitted to ASR, 2023
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A massive scalar field or a massive vector field
oscillates at its Compton frequency

* A massive scalar field ® | e A massive vector field X,

e When H < m?* (H=Hubble constant):

0, X' ~ cosmt




If the new field makes DM, its oscillation
amplitude is related to the DM energy density

* A massive scalar field ® | e A massive vector field X,

* Oscillates at Compton frequency

© = g CcoS Mt ‘ )?:)?Ocosmt

* The averaged stress-energy tensor

m2 2 m
p~ (T9) = =7 ‘

pij ~ (Tj) =0
* The scalar/vector field can be identified as a pressureless fluid

= a possible Dark matter candidate!



In experimental searches, we look for
interactions between this new fields and SM

* Different couplings for different fields:

- scalar: dilaton couplings d. (to EM, fermions, QCD): constants

of Nature (a, fermion masses) depend on space/time [atomic

CIOCkS’ UFF eXPerImentS’ *° ] see Damour and Donoghue, PRD, 2011

- Axion (pseudo-scalar): coupling to pseudo scalar Lagrangian
density (EM, QCD, fermion). Recent result: mass of pions
depend quadratically to the axion field [UFF violation]

see Kim and Perez, arXiv 2023

- Vector/Dark photon: kinetic mixing to EM y [modification of
EM, ...], coupling to the fermonic currents [B, B-L couplings,

leading to a UFF violation] see Horns, JCAP, 201
P. Fayet, PRD, 2018



Vector Ultra Light Dark Matter:
A Dark Photon/Hidden Photon



A vector DM will interact with
electromagnetism

e An effective Lagrangian for the vector-matter coupling

Lmat [\Ijvg,LLV7X,LL] — £SM [\ijg,ul/] — %F“VX,LU/ + ...

see Horns et al, JCAP, 2013 and references therein

e Kinetic mixing coupling y characterises the coupling with EM

e Other couplings with matter can be considered like to the B-L current:
leads to a violation of the UFF see e.g. Fayet, PRD, 2018

A hidden photon field will generate a small EM field and vice versa



An oscillating DM vector field will
generate a small electric field

e Oscillating DM vector field X = XO cos mt will generate an EM field

e Reminder: the amplitude is related to the DM density r=

EDM — —(?tA — —mxXO sin mt

2

e |dea to search for such a DM: amplify this electric field using reflectors
(boundary condition: creation of a classical propagating EM field)

CaVity see Gué et al, PRD, 2023

Dish see Horns et al, JCAP, 2013
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Use cavity and Rydberg spectro to search for Dark Photon

See ). Gué, et al, PRD, 2023 work from J. Gue, PhD student

Applied EM
signal

x =L Rydberg
atoms

e 2 electric fields: (i) an injected field and (ii) the DM induced field

» Detection of E* through the Stark effect Av & E* using Rydberg atoms

Slowly evolving signal (detectable)

Enhance the signal amplitude

Large range of DM mass explorable ,



Sensitivity analysis
work from J. Gue, PhD student

* Analysis includes: cavity losses (Q-factor), statistical noise (Rydberg),
systematic noise (RIN of injected field), ...
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The SHUKET experiment at CEA

SearcH for U(1) darK matter with an Electromagnetic Telescope

Metallic dish Shielding

N Low-noise
Antenna amplifiers
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* For a spherical dish, the electric field will be
focused at the center + non-relevant electric
field will be focused at the focal point



First result: SHUKET puts a stringent constraint

on the kinetic mixing parameter
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Recent update from CEA-SYRTE collaboration

work from |. Gue, PhD student

* |Improved data analysis considering signal stochasticity: improves slightly
the constraints based on a methodology presented in E. Savalle et al, PRL, 202

* Improved modelling of the experiment including
- Diffraction of the EM field emitted by the dish
- matching with the EM mode of the antenna

This improved realistic modelling leads to ~ | order of magnitude loss of
Sensitivity (unfortunately). J. Gué, paper to be submitted soon

e Using this realistic modelling: optimization of the experiment: work in
progress

* New runs in the 10-20 GHz frequency range performed at CEA

* |mprovements:
- new low-noise amplifiers
- new spectrum analyses



Scalar Ultra Light Dark Matter: the
dilaton

Remark: the QCD coupling of the axion implies that the pions mass
depends quadratically on the axion.

see Kim and Perez, arXiv 2023

= Part of the following discussion can be extended to the axion

|7



A scalar DM is expected to break the
equivalence principle

e An effective Lagrangian for the scalar-matter coupling

e D (d% + Yo, dé’”) m ;e
J1=e,u,d

see Damour and Donoghue, PRD, 2010

dg) 1% d 63
4e2 Fiu 7 = 293

Lmat [QW, \Ija 90] — ESM [g,uva \Ij] + SOZ

 Couplings usually considered:
- linear in @: lowest order expansion (cfr Damour-Donoghue)

- quadratic in @: lowest order if there is a Z> symmetry (cfr Stadnik et al)

* This leads to a space-time dependance of some constants of Nature to
the scalar field (o) = a (1 n dg,;)gpz')

m;() = m; (1 + dg’:}g gpi> for j = e, u,d

As(p) = As (1+d)¢")
Can be interpreted as a signature of a violation of the Einstein Equivalence

Principle: oscillations of the constants of Nature!
see also Arvanitaki et al, PRD 2015, Hees et al, PRD, 2018

|18



Two experiments developed at SYRTE



Search for a periodic signal in Cs/Rb

comparison

e (Cs/Rb FO2 atomic fountain data from SYRTE: high accuracy and high
stability, data used from 2008

see J. Guéna et al, Metrologia, 2012 and J. Guéna et al., I[EEE UFFC, 2012

e Search for a periodic signal in the data using Scargle’s method, see Scargle Ap), 1982
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Search for a periodic signal in a Mach-
Zender interferometer

* New type of experiment proposed. Simplified principle:

Fib VA (t — To)
iner
delay To ):‘ va(t =To) —va(t)
va(t)
\ /
Oscillations of the

scalar field

* Interpretation: comparison of an atomic frequency with itself in the past

 Main advantage: explored frequency range ~ kHz-MHz while standard
clocks are limited to 100 mHz

see Savalle et al, PRL 2021 9]



The DAMNED experiment (DArk
Matter from Non Equal Delays)

* |n practice:
Fiber - 54km tE——(X)—%‘;»— Signal

* , (Cavity}dﬂ 4 ’?}/l%
F A —®7-’2\J—Référence

e

- the “clock” is a laser cavity (both length and laser frequency oscillate)
- the length of the fiber oscillates
- the refractive index of the fiber oscillates
e First experiment built @SYRTE (E. Savalle’s PhD with P-E Pottie, F. Franck,

E. Cantin) and data analyzed taken into account the stochasticity of the
signal
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<

* no significant periodic signal is detected in the 10-200 kHz frequency band

see Savalle et al, PRL, 2021



Constraints on the linear couplings

Assuming the DM density to be constant over the whole Solar System (0.4 GeV/cm?3)
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Update from Hees et al, PRD, 2018

Quadratic couplings or relaxion
model leads to different
constraints

Results from:

- Rb/Cs: Hees et al, PRL, 2016

- BACON: Nature, 202 |

- JILA: Kennedy et al, PRL, 2020

- Eot-Wash:Wagner et al, CQG, 2012

- MICROSCOPE: Berge et al, PRL, 2018
- DAMNED: Savalle et al, PRL 2021

- GEO600:Vermeulen et al, Nature, 202 |
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Atom interferometers are sensitive to such
DM candidates as well

work from |. Gue, PhD student
* Calculations performed following method from Storey and
Cohen-Tannoudji, |. Phys, 1994. Exemple for a Mach-Zender:

C { @, =A(p.X)
d’f’:kL'(fL_fAt)L ‘bg:kL-(fL—’fAt)D

Path |

Path I!

3 — —
- D, =k;. (X —X4¢)
% @, =k;. (%, — xAt)|A % AL A | B %

| | o

Pulse(t = 0) Pulse(t = T) Pulse(t = 2T)

* Dilaton DM field impacts:

e (Classical trajectories of atoms
* Rest mass/transition energy (Lagrangian + kick velocity)

* Laser reference and frequency
24



Phase shift induced by DM in various Al setup
and sensitivity of various experiments

work from |. Gue, PhD student

e Standard Mach-Zender: used in Standford with 85Rb and 8/Rb

and for a gravimeter in Wuhan using 8/Rb
see P.Asenbaum et al, PRL, 2020 for standford and Z. Hu et al, PRA, 2020 for Wuhan

* Future AIONIO gradiometer: 2 Mach-Zender with Large
Momentum Transfer stacked at different elevations

see e.g. Badurina et al, PRD, 2022

* Future MAGIS-like experiment: 2 colocated Mach-Zender with

Large Momentum Transfer using 2 isotopes: advantageous for
UFF tests

see e.g.Abe et al, Quantum Sc. and Tech., 202 |

25



Results: search for dilaton

work fromj Gue, PhD student
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Results: search for axion

work from J. Gue, PhD student

* The mass of the pion oscillate due to the QCD coupling of

the aXion mHz Hy see Kim and Perez, arXiv 2023
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Conclusion

Searches for Dark Matter of mass < | eV (bosonic) is very active

Several models exist: scalar field, axion, dark photon, ... with different
phenomenology: oscillations (possible screening), topological default, ...

We (SYRTE + collaborations) are involved in:

- theoretical exploration, predictions of such models

- proposition of new experiments

- accurate modelling, optimization of existing experiments

- perform some experiments
- dedicated data analysis (sometimes tricky: stochasticity of signal)

Very recent results: - new proposal for an experiment to search for DP
- modelling/optimisation of SHUKET (DP)
- impact of dilatons/axions on UFF measurements and Al

- GASTON: search for transient DM candidate with Galileo

28



Are there other signatures to be
searched in lab data that can help
constraining DE models!?

Astronomy & cosmology

(gravitational waves, SNIa, CMB,
structure formation, galactic dynamics,

)

Local physics Quant.um High energy
Gravity o CERN
(Solar System, lab tests o L (particle physics: -
GNSS, ... ) | Unification LHC, Fermilab, DESY, ...)
DM and DE

L EXPERIMENT

Picture inspired by Altschul et al, Adv, in Space Res. 55, 501, 2015 29



The field has a frequency distribution due to
the DM velocity distribution

* The oscillation frequency depends on the velocity

TTLCZ U2
o=omf = (14 5

* DM velocity distribution - Stochastic distribution
- Coherence time ~ |06 osc.
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See Centers et al, arXiv1905.13650 and Foster et al, PRD, 2018 for the data analysis

Savalle et al, PRL 2021



Linear and quadratic couplings have a different phenomenology

* Linear coupling

GM
(1)(t a;) @ Loy — E 8541) A r/>

A fifth force generated by a
body - UFF tests are more
sensitive

DM, atomic sensors are
more sensitive

* Quadratic coupling: no more Yukawa interaction, richer
phenomenology

Can be screened or
enhanced (scolarisation)

Both atomic sensors and UFF tests are sensitive

to this behaviour

see A. Hees et al, PRD, 2018 3



Linear and quadratic couplings have a different phenomenology

* Linear coupling

GM
(1)(t m) @ Loy — E 8541) A r/>

A fifth force generated by a
body - UFF tests are more
sensitive

DM, atomic sensors are
more sensitive

* Quadratic coupling: no more Yukawa interaction, richer
phenomenology

p = 0 Cos mt

Can be screened or
enhanced (scolarisation)

Both atomic sensors and UFF tests are sensitive

to this behaviour

see A. Hees et al, PRD, 2018 3



Scalar field for a quadratic coupling

g A} A No source term (no fifth force)
© + (mZ | 5 OzApA> w|= 0 but effective mass that depends
- c y on the local matter density

V(@) in a vacuum
A
+ ©0

— >

o = (1)pg cos mt

see A. Hees et al, PRD, 2018
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Scalar field for a quadratic coupling

g A} A No source term (no fifth force)
© + <m2 | > OéAPA) w|= 0 but effective mass that depends
| C ) on the local matter density

V(@) in a vacuum
A
+ ©0

— >

o = (1)pg cos mt

see A. Hees et al, PRD, 2018

Screening for positive couplings and scalarization for negative couplings!
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This leads to a rich phenomenology

* Comparison of atomic frequencies:

2 GM 90 o0y GM 4
Y(t,xz) =K @ <1 (j) c2rA> AKJ(Q)?O cos (2wt + 26) (1 — 554) ZD

II:os.ltlonlz)czle}pce:ndent: c.:IocksI onI oscillation, amplitude depends
elliptic orbit? Comparison clock on position

in space versus clock on ground?

e UFF measurements

[Aa], ,=AaPI0 900 1 (2) GM .s 2wt + 26) v sin (2wt + 20)

71 that depends on r (directly
related to Eot-VWash and d d "
MICROSCOPE results) epends oh position

2 terms that oscillate, amplitude

see A Hees ecal PRD.2018 1 hey are all sensitive to screening/scalarization 33



Constraints on the quadratic couplings
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Impact of scalarization
Being in space is favorable ! Scalar field
tends to vanish at the Earth surface

see A. Hees et al, PRD, 2018



A vector DM will interact with
electromagnetism

e An effective Lagrangian for the vector-matter coupling

Lmat [\Ijag,LLV7X,LL] — £SM [\ijg/u/] — %F“VX,LU/ + ...

see Horns et al, JCAP, 2013 and references therein

e Kinetic mixing coupling y characterises the coupling with EM

e Other couplings with matter can be considered like to the B-L current:
leads to a violation of the UFF see e.g. Fayet, PRD, 2018

e The hidden photon X# will mix with the usual photon A#
AF = —OXH
XM +mPXH = —\OA"

A hidden photon field will generate a small EM field and vice versa 35



An oscillating DM vector field will
generate a small electric field

—

* Oscillating DM vector field X = X cosmt will generate an EM field
X=X
and in particular a small electric field
EDM — —(97511 — —mxfg sin mt

* As a reminder: the amplitude of oscillation is related to the DM energy

density 2

—

Xo
2

m2

p:

see Horns et al, JCAP, 2013 and references therein 36



In 2 DM vector field, a dish antenna will generate
an EM field that will be focused in its center

e the electric field // to a conductor surface vanishes (boundary condition)

 The surface of the dish will generate a propagating electric field to vanish
the DM electric field

* For a spherical dish, the electric field
will be focused at the center + non-
relevant electric field will be focused at
the focal point

e Sensitivity

1 1
_45X1O_14 ( Pget )é (O.3GeV/cm3)§ (1m2>§ 2/3
sens | 10~ W PCDM, halo Adish o

coeff. characterising the polarization
of the DM field wrt the dish

see Horns et al, JCAP, 2013 and references therein 37



A scalar field with a quartic potential can form
topological defects

e Spatial evolution of ¢*:

>
w

position

* Width related to the mass of the scalar field 1, ~ 1/m

* Amplitude related to DM energy density 603 ~ PpM

* Cross the Earth with a velocity (DM velocity distribution)



