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Pulsar timing
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What is a pulsar ?

~25km

Young (P
*
~30ms, dP/dt ~ 10-13)

Normal (P
*
~1s, dP/dt ~ 10-15)

Millisecond (P
*
~few ms, dP/dt <10-19)

Hewish and Bell 1968

Highly magnetised rotating neutron star:

From ATNF pulsar catalogue

Pulsating Radio source
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Pulsar timing (Pulsar radio ranging)

NUPPI
(Courtesy I. 
Cognard)



  

Timing a pulsar in a binary system

Timing accuracy 1µs ↔ 300 m

Time
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Timing: Binary parameters
Binary system described by 8 (9) - 1 parameters : 

6 (7) orbital + 2 masses – 1 mass function = 7 (8) independent parameters 

With Roemer delay (leading order geometric), 5 parameters :
● P  : Period
● a

p
sin(i) : Projected semi-major axis 

● e  : Eccentricity  
● T

p 
:
 
Time of periastron passage

● ω : Longitude of periastron

Missing 2 parameters among:
● i : orbital inclination
● (Ω : longitude of ascending node) 
● m

p
 : pulsar mass

● m
c
 : companion mass

 

→ Need for additional effects to lift 2 degeneracies

Mass function (Kepler’s 3rd law):
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Timing: Lifting degeneracies
➔ With relativistic effects 

● Einstein: Apparent spin frequency of the pulsar depends on gravitational field of companions
● Shapiro: Light travel time delayed by companion’s gravitational field
● Precession of periastron
● Gravitational wave emission (orbital period decay) 

➔ With mutual interactions in a triple system : e.g. triple system around PSR J0337+1715

➔ With complementary observations : e.g. optical observations in spider systems 
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Testing gravity with pulsars



9

Binary pulsar: 
Post-Keplerian tests of GR

PSR J0737-3039A, (Courtesy I.Cognard, G. Desvignes)

● Relativistic effects break timing 
degeneracies at post-Newtonian 
order i.e. with corrections of order 
v2/c2 ~ 10-4 at best.

● If more than 2 post-Keplerian 
parameters measured → Test of GR

● Equivalence principle test can be 
done at Newtonian order but 
requires more than 2 bodies. 
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Strong Equivalence Principle (SEP)

● Strong equivalence principle ~ Universality of free fall of self-gravitating masses

● In the weak-field regime: Solar system tests, e.g.  Lunar Laser Ranging in the Earth-Moon-Sun 
system (Hoffman+2018), planetary ephemerides (Mariani+2023).

● In the strong-field regime: requires compact objects → Pulsars

● At Newtonian order:
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Pulsar

White dwarf

Violation of SEP in binaries is not 
different from rescaling masses !
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Pulsar

White dwarf

Galaxy

(Damour-Shäfer, 1991)

(Zhu et al 2019)

With three bodies, we can make a test :

Note: NS strongly self-gravitating so interpretation in terms of initial and gravitational masses 
no longer holds. One needs to think in terms of effective gravitational constant.

(Nordtvedt parameter:                  but not very meaningful in strong-field regime!)
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PSR J0337+1715 (Discovery: Ransom+2013)

Mpsr ~  1.4 M
⨀

Spin period ~ 3ms

Mi = 0.2 M
⨀

Pi ~ 1.6 day

Mo ~ 0.4 M
⨀

Po ~ 327 days

1.2 A
U

7R ⨀
 
(0

.0
3UA)
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Welcome to Nançay !

100m

150m

Receiver

Deer

Wild boar

NUPPI instrumentation

I. Cognard
L. Guillemot
G. Desvignes
G. Theureau
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And here is PSR J0337+1715...

‘’Good’’ single pulse, October 4th 2014 Template pulse profile 
(450h of observation, 1230-1742MHz)

Voisin+ 2020
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Problem: there is no model to 
predict accurate times of arrival
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Need for a dedicated timing model

Pulsar system delays:
- Geometric (Roemer, Kopeikin..)
- Shapiro (light propagation)
- Einstein (time dilation)
- Aberration

Interstellar propagation delays:
- Dispersion measure

Solar system delays:
- Geometric
- Shapiro
- Einstein
- Astrometry...

Pulsar
Interstellar medium

Tempo 2 (Edwards+ 2006, Hobbs+ 2006)Nutimo
(NUmerical TIming MOdel )

(Voisin 2017, Voisin+2020)

Emission time 
in the pulsar frame

Delays

Spin frequency and derivativeNumber of turns

Arrival time in observer’s 
frame
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We need to solve the 3-body orbital motion at 1PN

Strong-field generalisation of Eddington PPN parameters
→ Set to general relativity values

Newtonian terms with body-dependent interaction constant

(Damour and Taylor 1992; Will 1993)

First order (1PN)
relativistic corrections:

Target accuracy: 1 ns ↔ 3m
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Additional constraints other experiments

PSR J0737-3039A, (Courtesy I.Cognard, G. Desvignes)

We assume: 

From Solar System tests (e.g. LLR) : 
→ No deviation of GR for WD-WD interaction

Other deviations from GR at 1PN order:

(Damour and Taylor 1992; Will 1993)
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In summary, Nutimo does... 

● Solve motion numerically at 1PN to meter accuracy 

● Calculate delays: geometric, relativistic and propagation

● Invert timing formula to obtain times of arrival t
a
 from spin phase N

Pulsar
Interstellar medium
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Let’s fit the model to the data !
More easily said than done:

● 27 model parameters :
- 2 pulsar spin
- 2x6 orbital 
- 6 astrometric
- 2 radio propagation (DM)
- 1 SEP violation parameter 

● 10 sec to calculate a single model

● Need reliable posterior distribution function 
on each parameter → MCMC

100,000 CPU hours on MESOPSL cluster 

Voisin+ 2020
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What about the SEP ?
Neutron star

White dwarf

White dwarf

95% confidence

Voisin+ 2020

WEP limit applies
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Comparison to Archibald+2018

Uncertainty mostly systematic
→ Archibald+ 2018:

→ Voisin+ 2020:
● Independent data
● Independent analysis software
● Additional effects in timing model (Kopeikin delay)

Uncertainty statistical+systematic

Other differences:
● 1st measurement of longitude of 

ascending node (Voisin+ 2020)
● 2.5 sigma tension in masses
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Beyond General Relativity

Berti+ 2015
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Bergmann-Wagonner theories

 

Scalar potential

Coupling function

Can become arbitrarily large in case of 
spontaneous scalarisation !

Bergmann 1968, Wagonner 1970

Spontaneous scalarisation (Damour and Esposito-Farèse 1996)
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Damour-Esposito-Farèse theory

depends on the equation of state

Voisin+ 2020

Damour and Esposito-Farèse 1992

Triple system

Binary systems

LLR

NS Sensitivity:

N. Wex
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Conclusions

● Pulsars provide an excellent test-bed for test of gravity 
with compact objects

● The triple system around PSR J0337+1715 is a unique 
opportunity to test SEP violations at Newtonian order:

● Coming soon: hints of a small planet in a hierarchical 
orbit around the triple system ! 
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Back-up slides
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Is that all ? 
Some preliminary results
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Periodogram: a bump ? 
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Could this be a planet ?

Mpsr ~  1.4 M
⨀

Spin period ~ 3ms

Mi = 0.2 M
⨀

Pi ~ 1.6 day

Mo ~ 0.4 M
⨀

Po ~ 327 days
1.2 A

U

5 
A

U

M
planet

 ~  8e-9 M
⨀
 ~ 0.23 MMoon

P
planet

 ~ 2800 days
e ~ 0.3

Preliminary!
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Almost only white noise left !

Preliminary!
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Statistical error improves by 25%

Preliminary!
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The signal due to the planet is not 
trivial 

Preliminary!
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Is this real ? 
Preliminary!

Great statistical significance  
- Akaike and Bayesian information criterion ~ 2000

Alternative hypothesis:
- interstellar medium propagation : should be chromatic
- clock drifting
- intrinsic pulsar “red noise” → possible but extreme

 
Internal consistency:

- Stability of the orbit: not chaotic due to strong hierarchy
- Formation/origin of the planet : appears possible
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Conclusions on tests of Gravity 

● Pulsars are the ideal compact objects for testing gravity

● The triple system around PSR J0337+1715 is unique with its 2 white 
dwarf companions

● This allows for the best test of SEP in the strong field regime:              
                                                         

                                                                                                                    (95% confidence) 

● Hints of a small distant planet making this system even more unusual 
(preliminary).
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Strong equivalence principle
● Extension of EEP to gravitational energy:

– Grav. weak equivalence principle 

– Grav. Local Lorentz invariance 

– Grav. Local position invariance 

Strong equivalence principle
(SEP)

Moon

EarthSun g
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SEP can be tested with LLR

Moon

EarthSun g

Nordtvedt parameter (Nordtvedt 1968)

Hofmann and Müller 2018

Orbital polarisation:
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