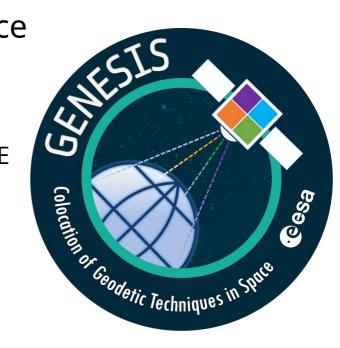
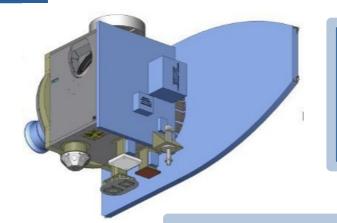


GENESIS


Co-location of geodetic techniques in space

Pacôme DELVA

SYRTE, Paris Observatory-PSL, Sorbonne Université, CNRS, LNE

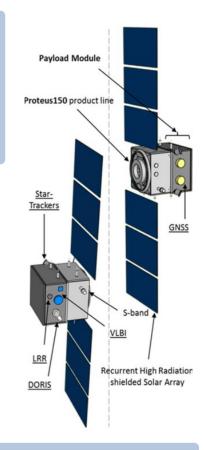

Former member of the Galileo Scientific Advisory Committee (European Space Agency)

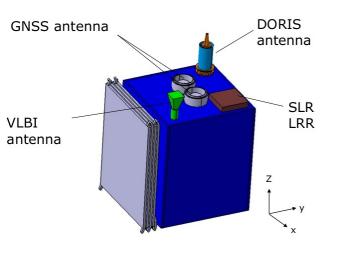
On behalf of the white paper contributors

History: from GRASP to GENESIS

GRASP (2011, 2015) - proposals to NASA

850 x 1350 km Sun-Synchronous Orbit


4 geodetic techniques co-location



762 x 7472 km highly eccentric Orbit

4 geodetic techniques co-location

Add. payloads: accelerometer and atomic clock

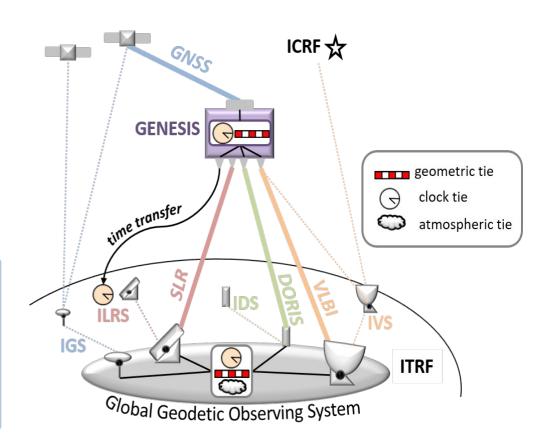
GENESIS (2022) – funded in ESA FutureNAV programme

6000 km circular MEO Orbit

4 geodetic techniques co-location

Add. payloads (optional): accelerometer and A-LRR

GENESIS: mission concept



Obj. 1

Improve ITRF (International Terrestrial Reference Frame) accuracy and stability, aiming for a parameter accuracy of 1 mm and a stability of 0.1 mm/year

Obj. 2

Obtain a **direct link between the ITRF and the ICRF** (International Celestial Reference Frame)

In-orbit co-location of the 4 space geodetic techniques on a highly calibrated and stable platform: GNSS, SLR, DORIS and VLBI

- Circular orbit at 6000 km altitude and quasi-polar inclination (preliminar)
- Maximum development time of 4 years, small satellite platform
- 2-3 year mission duration (4 years nomimal lifetime for the satellite)

Geodetic infrastructure including GENESIS

ENABLED SCIENTIFIC APPLICATIONS	- Sea-level change - Water cycle - Geological hazards	- Weather/climate - Ecosystems - Geodynamics	
GEOPHYSICAL OBSERVABLES	- Land and ice deformation and change - Sea-surface height - Atmospheric parameters - Land and vegetation topography - Mass change - Surface and ground water and soil moisture		
EARTH ORBITING MISSIONS	- Time-variable gravity - Altimetry - InSAR and SAR	 Radio occultation GNSS reflections from space Optical change detection 	
PRIMARY GEODETIC PRODUCTS	- Precise positions- Orbit determination- Earth rotation	- Gravity field - Reflection and signal-to-noise ratio - Total electron content and tropospheric delay	
TERRESTRIAL REFERENCE FRAME	- Station coordinates as funct - Origin (Earth system center		
GEODETIC INFRASTRUCTURE	- Geodetic techniques (SLR, V - Software	(LBI, GNSS, DORIS) GENESIS	

Illustration of how the geodetic infrastructure is connected to enabled scientific applications (National Academies of Sciences, U.S., 2020).

GENESIS Science Objectives

P. Delva et al., Earth, Planets and Space, vol. 75, no. 1, p. 5

open access

Reference Frames and Earth Rotation

Improvement of the ITRF

Unification of reference frames and Earth rotation

Earth Sciences

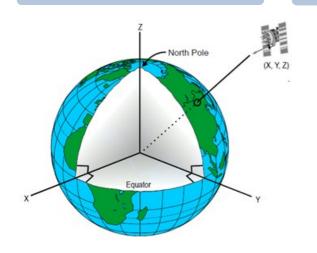
Gravity field

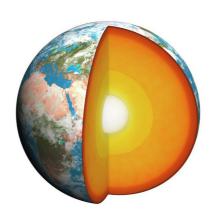
Altimetry

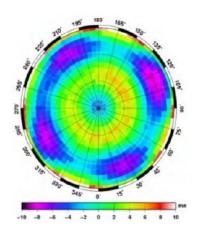
ice mass losses

Geodynamics, geophysics, natural hazards

Earth's energy imbalance

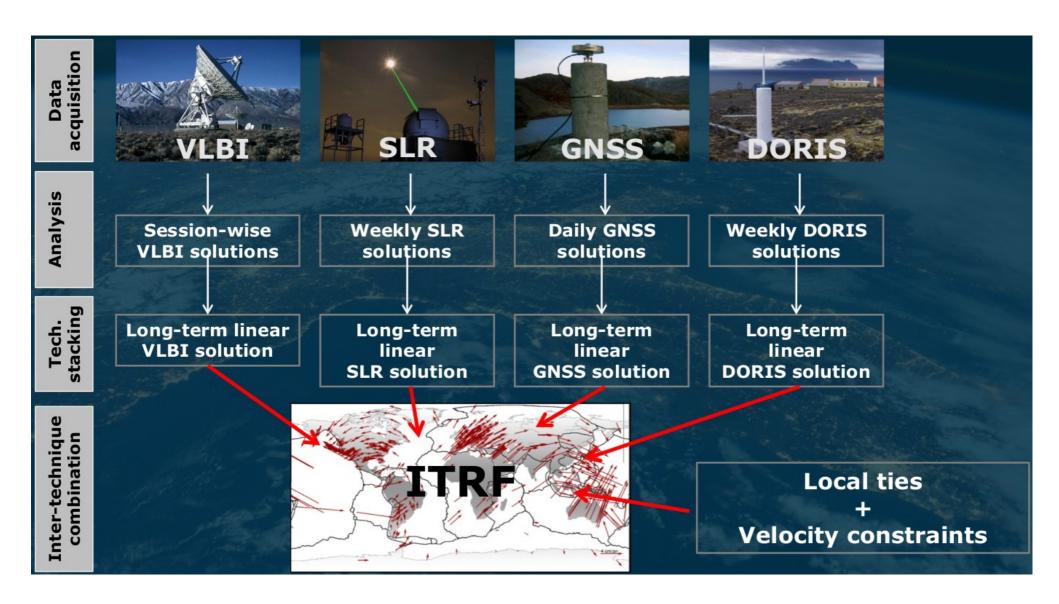

atmosphere


Positioning and Navigation


GNSS orbits and positioning

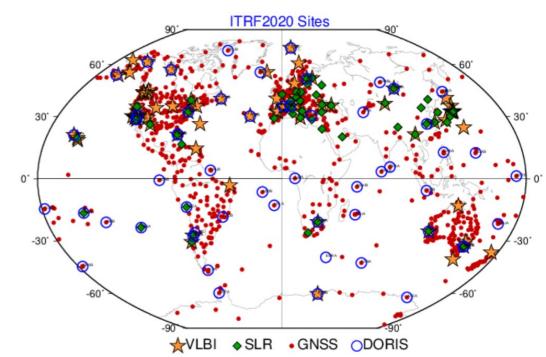
GNSS antenna phase center calibration

Positioning of satellites and space probes



International Terrestrial Reference Frame (ITRF) elaboration

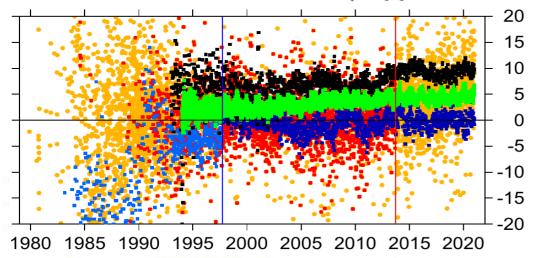
Motivation for GENESIS concerning ITRF


GGOS (Global Geodetic Observing System) requirements for the ITRF (1 mm accuracy, 0.1 mm/yr stability) are far from being met

- Main limiting factors of the ITRS realization:
 - Number and distribution of geodetic sites (SLR and VLBI)
 - Number and accuracy of the measurements of local ties between the reference points of different techniques
 - Each space geodetic technique suffers from its own systematic effects:
 range biases, phase centers, multipath, gravitational sag, tropospheric refraction, quasar structures, ...
- Fundamental improvement with GENESIS:
 - Complementary, highly accurate co-location of all four space geodetic techniques in space, on the same satellite platform
 - Particular attention paid to the **time and space metrology** on board

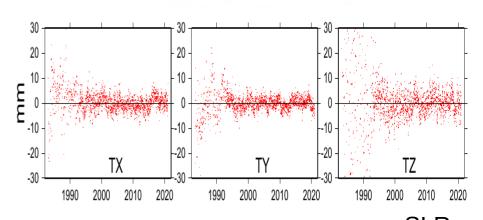
Quality of ITRF Co-locations on Ground

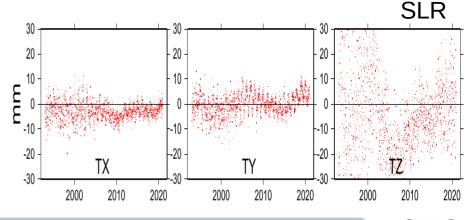
- ITRF affected by accuracy of local ties measurements
 - In ITRF 2020 more than 50% measured ties have discrepancies > 5 mm
 - Caused mainly by technique systematic errors
- The number and distribution of geodetic sites over the globe is inhomogeneous and unfrequently updated
 - SLR & VLBI co-locations (~ 10 sites) are poorly distributed but fundamental for the frame definition



Percentage of tie discrepancies					
	< 5 mm	> 5 mm			
GNSS – VLBI (77)	50 %	50 %			
GNSS – SLR (53)	36 %	64 %			
GNSS – DORIS (123)	32 %	68 %			

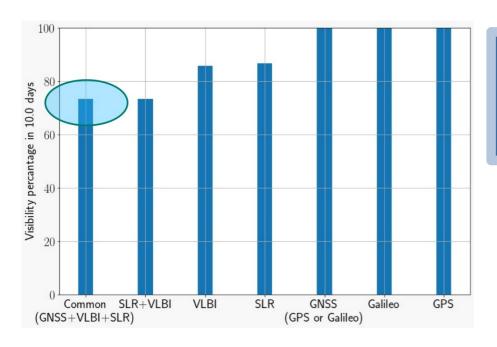
Systematic effects in the ITRF





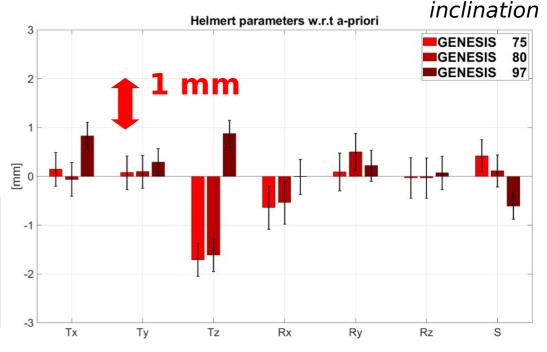
- Orange: all VLBI Sessions
- Red: Selected VLBI Sessions
- Light blue: all SLR time series
- Dark blue: Selected SLR time series
- Green: IGS/Repro3
- Black: DORIS

ITRF Origin (Geocenter)

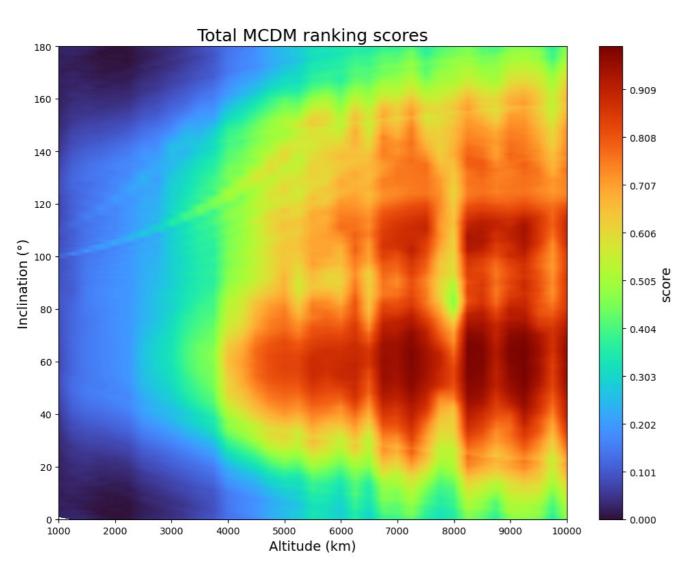

DORIS

Current accuracy and stability of the ITRF long-term origin achievable today using SLR data is at the level of or better that 5 mm in position and 0.5 mm/yr in time variation. A factor of at least 5 will be needed to reach the GGOS goal.

Simulations: ITRF objectives



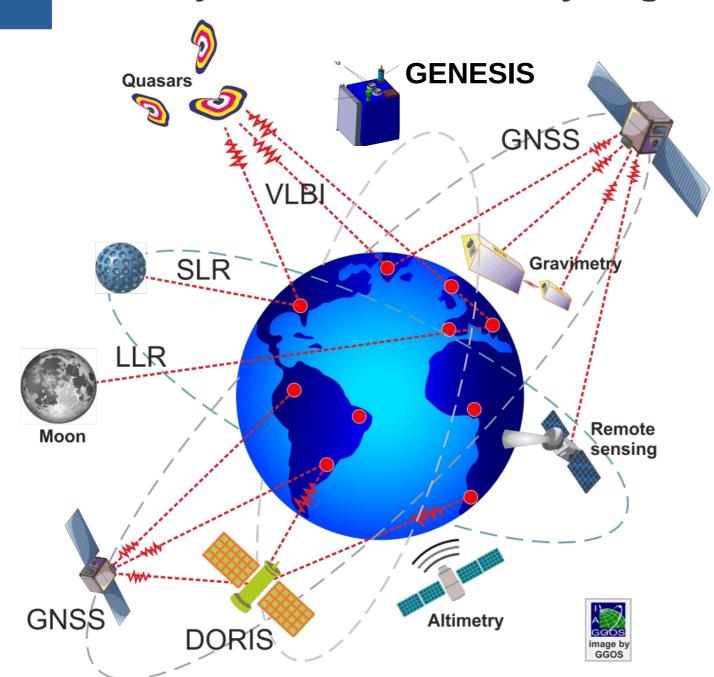
Several institutes assessed the possibility to reach the ITRF objectives with a GRASP like satellite through simulations: JPL (GRASP), IGN/IPGP/CNES/SYRTE (E-GRASP, GENESIS), ROB/GFZ/ESA (GENESIS)


GENESIS common Visibility of GNSS, VLBI, DORIS and SLR around 75% of the time, 10 days simulation (ROB)

GENESIS Helmert parameters of the VLBI-only solution with respect to the a-priori reference frame (GFZ)

Simulations: choice of the GENESIS orbit

Scores based on Multi-Criteria Decision Making (MCDM) methods

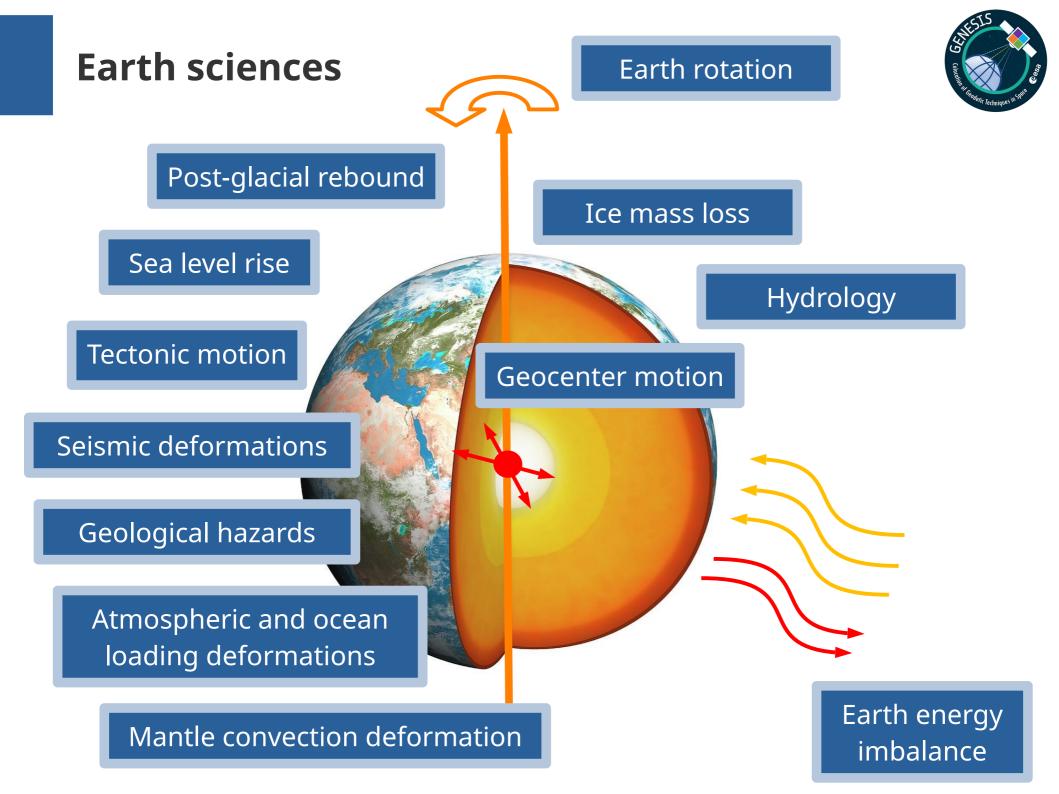

(preliminary results)

- MCDM gives the best compromise for all chosen criteria
- Orbits at 60° inclination preferred
- For the chosen criteria the best orbit is at 60° inclination and 9250km altitude

IGN/IPGP/CNES/SYRTE

Earth system observations synergies

Geometry

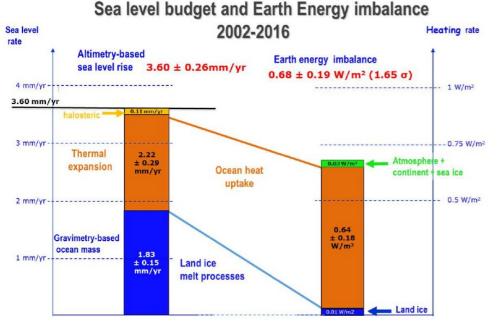

reference systems and orbits (VLBI, SLR, GNSS, Doris, GENESIS, ...)

Gravimetry

geoid (gravimeters, GRACE-FO, GOCE, ...)

Altimetry/InSAR

topography, deformations (Sentinel-x, ...)



Effect of uncertainty in the geocenter estimate

The uncertainty in geocenter dominates (GENESIS workshop, April 2022, A. Blazquez & B. Meyssignac):

- The uncertainty in the gravimetry-based ocean mass trend and the Earth global water budget
- The uncertainty in the 20 yr trend of altimetry-based global-mean sea-level
- The uncertainty in the geodetic-based Earth Energy Imbalance (EEI)

Now: ±0.17 W·m⁻² in 18-yr mean EEI **Goal**: ±0.10 W·m⁻² in 20-yr mean EEI &

trends in EEI

mmSLE/yr	Ocean mass	Greenland	Antarctica	LWS
geocenter	0.19	<0.01	0.03	0.22
Center	0.06	0.01	0.05	0.06
GIA	0.03	0.03	0.01	0.04
C20	0.01	< 0.01	< 0.01	0.02
filter	0.01	< 0.01	0.02	0.01
TOTAL	0.24	0.03	0.05	0.26

GRACE-based global water budget, Source of the uncertainties in the trends (mm/yr)

Participation of scientific community

June 2023 GSAC 37

Oct 2023 ITT closure Q4 2023

Scientific Exploitation

Gap analysis

Nov/Dec 2023

GENESIS Science
Workshop

A small team of scientists with a Lead Coordinator will be nominated by ESA

- Participation to requirements consolidation in Phase A
- Support ESA in the **follow up of the industrial activities**, with emphasis on instrument and platform developments
- Analysis of mission performance and the mission contribution towards target ITRF improvement
- Preparation of the scientific data exploitation, covering any gaps in algorithms, tools or ground infrastructure required
- Preparation and execution of required ground-based campaigns (VLBI, SLR)

Conclusions

- Primary objective of the GENESIS mission: improve the accuracy and stability of the realization of the ITRS to GGOS requirements (1mm acc. and 0.1mm/year stab.)
- Critical importance of the ITRF and the entire geodetic infrastructure and products for many scientific applications in Earth and navigation sciences, in particular in the context of climate change
- These goals are endorsed by a large community of scientists and industries as well as various authorities (IAG, UN, ...)
- GENESIS will improve the products of several other missions such as gravimetry and altimetry satellites
- CDF of ESA has shown the **feasibility of the GENESIS** mission within the ESA GENESIS defined program boundaries, with a target launch date in 2027