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Introduction - GBAR a\ LkB

The GBAR Experiment
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- Measurement of gravity

interaction of matter on
anti-matter, test of the
equivalence principle

- Measurement of the free fall

time of antihydrogen atoms

- Atom-by-atom detection

- Objective of precision on g of the

order of 10~2 with 1000 atoms

[1] P. Blumer Presentation of GBAR at Moriond conference, 2023



Introduction - Classical GBAR ; Free Fall chamber y\ LkB

- Ultra cold H* in ground state of
an ion trap

- Photodetachment of excess
positron by laser pulse

- Freefall until annihilation on
Micomega plates

- Objective of precision on g of the
order of 10~2 with 1000 atoms

Today we know g € [0.46 g ; 1.04 g]4

[2] E. K. Anderson et al. Observation of the effect of gravity on the motion of antimatter Nature, 2023 2



Introduction - Quantum Reflection

Theoretical Modelisation

i - Bounce on the Casimir Polder

potential
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- We aim for a high reflection

probability

- Easier to achieve with fewer
bounces

- Reflexion due to high
variation of the potentiel
near the surface
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In the GBAR experiment we hope to drop the H from hoc 10 pm

[3] G. Dufour et al. Quantum reflection of antihydrogen from the Casimir potential above matter slabs PRA, 2013 3



Introduction - Quantum GBAR

& Nmax < Zmax

- New measurement method,
based on interferences

- Quantum bounce on the
attractive Casimir-Polder
potential

Yz

- Atom-by-atom detection

- Objective of precision on g/g

of the order of 10—° with 1000

atoms!“l

[4] P-PCrépin et al. Quantum interference test of the equivalence principle on antihydrogen PRA, 2019



Introduction - Gravitational Quantum States

We want to solve the eigen-value equation :

n d*y(2) . mgz isz>0
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An are the zeros of the Airy function

- Energy scale: ¢g = mgly ~ 0.6 peV
0 ~ 145Hz




Introduction - Numerical Simulation & Measurement
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Toward fewer bounce




Result - Two waves interference A\ LkB
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- The fewer the bounces, the
simpler the interference
pattern
- Possible to test the
interferometer with a s
Hydrogen atom beam
- A two wave interference 3
regime, between one bounce T

and zero bounce 7



Result - Two waves interference A\ LkB

- The fewer the bounces, the
simpler the interference
pattern

- Possible to test the
interferometer with a
Hydrogen atom beam

- A two wave interference
regime, between one bounce
and zero bounce 7
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Result - Two waves interference A\ LkB

X
h s ~
1/ / \\
B d
D N
B1_% 2.7
- The fewer the bounces, the
simpler the interference
pattern
- Possible to test the
interferometer with a Z 0
Hydrogen atom beam

- A two wave interference
regimey between One bounce -1.10 -1.08 -1.06 -1.04 Z[m—’:]OZ ~1.00 -0.98 -0.96
and zero bounce




Result - Focalisation of the wavepacket

Study of the one bounce regime
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- After only one bounce the
wavepacket refocalise

- This focal point is not well
defined in space

- We can use this to create

interferences inside the
bounce

- Considering the miror as a
lens we can determinée the

focal time as tf = ——~

ti— 2V—g
Where t; and v, are the

impact time and velocity
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Result - Quantum evolution of the Wavepacket A\ LKB

The quantum evolution shows explicitly the interferences created at
the focal spot
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Result - Quantum evolution of the Wavepacket A\ LKB

The quantum evolution shows explicitly the interferences created at
the focal spot
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Result - Quantum evolution of the Wavepacket
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Result - Numerical estimation of the precison
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Take Home Message : With about 100 atoms we can achieve a
relative precision of the 10~ order and have a much simpler

interference pattern while having shorten the experimentation time.

n



Prospective - Application to exotic atoms A\ LKB

- We proposed a new kind of atomic interferometer
- It can be applied beyond the scope of the GBAR experiment

- The GRASIAN experiment aims to test the quantum bounce of
Hydrogen

- We hope to apply this method to exotic atoms with a very short
lifespan atoms or a very little sample

- We are currently working on the full model with loss and
photodetachment taken into account
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